OV, VJ,Rectangles——多变量变动不能分类讨论

Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have to calculate the area of the intersected part of two rectangles. its sides are parallel to OX and OY .
Input
Input The first line of input is 8 positive numbers which indicate the coordinates of four points that must be on each diagonal.The 8 numbers are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first rectangle are(x1,y1),(x2,y2);the other two points on the second rectangle are (x3,y3),(x4,y4).
Output
Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.
Sample Input
1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00
5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50
Sample Output
1.00
56.25

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
double max(double a, double b)
{
    return a>b?a:b;
}

double min(double a, double b)
{
    return a<b?a:b;
}

int main()
{
    double x1, x2, x3, x4, y1, y2, y3, y4, t;

    while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &x1, &y1, &x2, &y2, &x3, &y3, &x4, &y4) != EOF)
        {
            if(x1 > x2)
            {
                t = x1;
                x1 = x2;
                x2 = t;
            }

            if(y1 > y2)
            {
                t = y1;
                y1 = y2;
                y2 = t;
            }

            if(x3 > x4)
            {
                t = x3;
                x3 = x4;
                x4 = t;
            }

            if(y3 > y4)
            {
                t = y3;
                y3 = y4;
                y4 = t;
            }

            x1 = max(x1, x3);
            y1 = max(y1, y3);
            x2 = min(x2, x4);
            y2 = min(y2, y4);

            if(x2 < x1 || y2 < y1)
                printf("0.00\n");
            else
                printf("%.2lf\n", (x2 - x1)*(y2 - y1) );
        }
    return 0;
}

以上代码思路来自博客:https://blog.csdn.net/bmicnj/article/details/51437376

由于给的是坐标那么这里计算长方形的面积公式必然逃不开坐标运算。经几次画图分析知,绝对值这里也用不上。我们暂且可定义此情况下长方形面积公式为:
S = (x2 - x1) * (y2 - y1)

不论是以下3种情况哪种情况,我们会发现都是从x2,x4中选小的,减去x1,x3中选大的。也即面积公式里的x2是矩形顶点x2,x4中小的一个。x1是矩形顶点x1,x3中大的一个。对于y的情况同理。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在做此题时,x1,x2。x3,x4的位置是随意分布的。并不是像上图所示x1总在x2的左边,x3总在x4的左边。
对于这种变来变去的量,我们要把它固定不变,也是为了方便面积公式的使用。我们要自己制定计算规范。即每次都把x1放在x2的左边。x3放在x4的左边。

由于x1,x3总在x2,x4的左边。也就是说max{x1, x3} < min{x2, x4} 恒成立。当把max{x1, x3}赋给x1, min{x2, x4}赋给x2时,若x2 < x1。这是矛盾的,也即两个矩形不会有相交部分。

最后总结:对于这种多变量变动问题,分情况讨论很麻烦,要使用公式问题。可以尝试指定运算规范。来指定在某种情况下使用公式。

Python网络爬虫与推荐算法新闻推荐平台:网络爬虫:通过Python实现新浪新闻的爬取,可爬取新闻页面上的标题、文本、图片、视频链接(保留排版) 推荐算法:权重衰减+标签推荐+区域推荐+热点推荐.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值