Deep Learning:一

Deep networks的优点:

  一、比单层神经网络能学习到更复杂的表达。比如说用k层神经网络能学习到的函数(且每层网络节点个数时多项式的)如果要用k-1层神经网络来学习,则这k-1层神经网络节点的个数必须是指数级庞大的数字。

  二、不同层的网络学习到的特征是由最底层到最高层慢慢上升的。比如在图像的学习中,第一个隐含层层网络可能学习的是边缘特征,第二隐含层就学习到的是轮廓什么的,后面的就会更高级有可能是图像目标中的一个部位,也就是是底层隐含层学习底层特征,高层隐含层学习高层特征。

  三、这种多层神经网络的结构和人体大脑皮层的多层感知结构非常类似,所以说有一定的生物理论基础。

  Deep networks的缺点:

  一、网络的层次越深,所需的训练样本数越多,如果是用有监督学习的话,那么这些样本就更难获取,因为要进行各种标注。但是如果样本数太少的话,就很容易产生过拟合现象。

  二、因为多层神经网络的参数优化问题是一个高阶非凸优化问题,这个问题通常收敛到一个比较差的局部解,普通的优化算法一般都效果不好。也就是说,参数的优化问题是个难点。

  三、梯度扩散问题。因为当网络层次比较深时,在计算损失函数的偏导时一般需要使用BP算法,但是这些梯度值随着深度慢慢靠前而显著下降,这样导致前面的网络对最终的损失函数的贡献很小。这样的话前面的权值更新速度就非常非常慢了。一个理论上比较好的解决方法是将后面网络的结构的神经元的个数提高非常多,以至于它不会影响前面网络的结构的学习。但这样岂不是和低深度的网络结构一样了吗?所以不妥。
所以一般都是采用的层次贪婪训练方法来训练网络的参数,即先训练网络的第一个隐含层,然后接着训练第二个,第三个…最后用这些训练好的网络参数值作为整体网络参数的初始值。这样的好处是数据更容易获取,因为前面的网络层次基本都用无监督的方法获得,很容易,只有最后一个输出层需要有监督的数据。另外由于无监督学习其实隐形之中已经提供了一些输入数据的先验知识,所以此时的参数初始化值一般都能得到最终比较好的局部最优解。比较常见的一种层次贪婪训练方法就是stacked autoencoders。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值