2020张宇1000题【好题收集】【第十章:线性代数(一)】

线性代数中翻译成人话的结论


①: A 矩 阵 中 每 行 元 素 的 和 都 是 c A矩阵中每行元素的和都是c Ac ⇒ \Rightarrow A 矩 阵 的 有 个 特 征 值 是 c , 特 征 向 量 为 [ 1 , 1 , 1 , . . . , 1 ] T A矩阵的有个特征值是c,特征向量为[1,1,1,...,1]^T Ac,[1,1,1,...,1]T
②: 有 不 全 为 0 的 矩 阵 B , 使 得 A B = O 有不全为0的矩阵B,使得AB=O 0B,使AB=O ⇒ \Rightarrow A X = O 有 非 零 解 ⇒ ∣ A ∣ = 0 AX=O有非零解\Rightarrow |A|=0 AX=OA=0

如 果 A 也 是 非 零 矩 阵 的 话 如果A也是非零矩阵的话 A ⇒ \Rightarrow B 不 可 逆 , 也 就 是 ∣ B ∣ = 0 B不可逆,也就是|B|=0 B,B=0
③:
a i j = A i j a_{ij}=A_{ij} aij=Aij ⇒ \Rightarrow { A ∗ = A T ∣ A ∣ = 1 或 ∣ A ∣ = − 1 A A T = E ⇒ A 是 正 交 矩 阵 \left\{\begin{matrix} A^*=A^T\\ \\ |A|=1或|A|=-1 \\ \\ AA^T=E\Rightarrow A是正交矩阵 \end{matrix}\right. A=ATA=1A=1AAT=EA

一.行列式

做题中得到的结论

①:题43
∣ ( A ∗ ) ∗ ∣ = ∣ A ∣ ( n − 1 ) 2 |(A^*)^*|=|A|^{(n-1)^2} (A)=A(n1)2

基础知识

行列式只能挨着的行或列交换哦,然后产生负号

分块矩阵行列式

主对角线:
∣ A O ∗ B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix} A & O\\ *&B \end{vmatrix}=|A||B| AOB=AB
副对角线:
∣ O A B ∗ ∣ = ( − 1 ) n m ∣ A ∣ ∣ B ∣ \begin{vmatrix} O& A\\ B&* \end{vmatrix}=(-1)^{nm}|A||B| OBA=(1)nmAB
A , B A,B A,B分别是nxn,mxm的方正

爪型行列式

∣ a 1 1 1 1 1 a 2 0 0 1 0 a 3 0 1 0 0 a 4 ∣ \left| \begin{array} { c c c c } { a _ { 1 } } & { 1 } & { 1 } & { 1 } \\ { 1 } & { a _ { 2 } } & { 0 } & { 0 } \\ { 1 } & { 0 } & { a _ { 3 } } & { 0 } \\ { 1 } & { 0 } & { 0 } & { a _ { 4 } } \end{array} \right| a11111a20010a30100a4
∣ a 1 − 1 a 2 − 1 a 3 − 1 a 4 1 1 1 0 a 2 0 0 0 0 a 3 0 0 0 0 a 4 ∣ = ( a 1 − 1 a 2 − 1 a 3 − 1 a 4 ) a 2 a 3 a 4 \left| \begin{array} { c c c c } { a _ { 1 } - \frac { 1 } { a _ { 2 } } - \frac { 1 } { a _ { 3 } } - \frac { 1 } { a _ { 4 } } } & { 1 } & { 1 } & { 1 } \\ { 0 } & { a _ { 2 } } & { 0 } & { 0 } \\ { 0 } & { 0 } & { a _ { 3 } } & { 0 } \\ { 0 } & { 0 } & { 0 } & { a _ { 4 } } \end{array} \right| = ( a _ { 1 } - \frac { 1 } { a _ { 2 } } - \frac { 1 } { a _ { 3 } } - \frac { 1 } { a _ { 4 } } ) a _ { 2 } a _ { 3 } a _ { 4 } a1a21a31a410001a20010a30100a4=(a1a21a31a41)a2a3a4

范德蒙行列式

有点容易忘。。。
D n = ∣ 1 1 … 1 x 1 x 2 … x n ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 … x n n − 1 ∣ D _ { n } = \left| \begin{array} { c c c c } { 1 } & { 1 } & { \dots } & { 1 } \\ { x _ { 1 } } & { x _ { 2 } } & { \dots } & { x _ { n } } \\ { \vdots } & { \vdots } & { } & { \vdots } \\ { x _ { 1 } ^ { n - 1 } } & { x _ { 2 } ^ { n - 1 } } & { \dots } & { x _ { n } ^ { n - 1 } } \end{array} \right| Dn=1x1x1n11x2x2n11xnxnn1
D n = ∏ 1 ≤ j &lt; i ≤ n ( x i − x j ) D _ { n } = \prod _ { 1 \leq j &lt; i \leq n } ( x _ { i } - x _ { j } ) Dn=1j<in(xixj)
就是所有下标大的减下标小的的乘积

4【结论题】【缺主对角线】

∣ 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ∣ , n 阶 的 = ( n − 1 ) ( − 1 ) n − 1 \begin{vmatrix} 0 &amp;1 &amp;1 &amp;1 \\ 1 &amp;0 &amp;1 &amp;1 \\ 1 &amp;1 &amp;0 &amp;1 \\ 1&amp; 1 &amp; 1 &amp; 0 \end{vmatrix},n阶的=(n-1)(-1)^{n-1} 0111101111011110,n=(n1)(1)n1
不好写n阶的,就写了4阶的
所有列加到第一列,然后提出 ( n − 1 ) (n-1) (n1),这时 a 11 = 1 a_{11}=1 a11=1,然后就用 − r 1 -r_1 r1加到所有排,变成 ∣ 1 1 1 1 0 − 1 0 0 0 0 − 1 0 0 0 0 − 1 ∣ \begin{vmatrix} 1 &amp;1 &amp;1 &amp;1 \\ 0 &amp;-1 &amp;0 &amp;0 \\ 0 &amp;0 &amp;-1 &amp;0 \\ 0&amp; 0 &amp; 0 &amp; -1 \end{vmatrix} 1000110010101001这样的上三角,答案就很明显了

7【打星】

求 ∣ 1 − x x 0 0 0 − 1 1 − x x 0 0 0 − 1 1 − x x 0 0 0 − 1 1 − x x 0 0 0 − 1 1 − x ∣ 求\left| \begin{array} { c c c c c } { 1 - x } &amp; { x } &amp; { 0 } &amp; { 0 } &amp; { 0 } \\ { - 1 } &amp; { 1 - x } &amp; { x } &amp; { 0 } &amp; { 0 } \\ { 0 } &amp; { - 1 } &amp; { 1 - x } &amp; { x } &amp; { 0 } \\ { 0 } &amp; { 0 } &amp; { - 1 } &amp; { 1 - x } &amp; { x } \\ { 0 } &amp; { 0 } &amp; { 0 } &amp; { - 1 } &amp; { 1 - x } \end{array} \right| 1x1000x1x1000x1x1000x1x1000x1x
通过降阶我们阔以发现一个递推公式
D n = ( 1 − x ) D n − 1 + x D n D_n=(1-x)D_{n-1}+xD_n Dn=(1x)Dn1+xDn
线性的递推公式我们阔以用学习矩阵快速幂的时候的方法把它转换一哈
( D n D n − 1 ) = ( 1 − x x 1 0 ) ( D n − 1 D n − 2 ) = ( 1 − x x 1 0 ) n − 2 ( D 2 D 1 ) \begin{pmatrix} D_n \\ \\ D_{n-1} \end{pmatrix}=\begin{pmatrix} 1-x&amp;x\\ \\ 1 &amp;0 \end{pmatrix}\begin{pmatrix} D_{n-1} \\ \\ D_{n-2} \end{pmatrix}=\begin{pmatrix} 1-x&amp;x\\ \\ 1 &amp;0 \end{pmatrix}^{n-2}\begin{pmatrix} D_2 \\ \\ D_1 \end{pmatrix} DnDn1=1x1x0Dn1Dn2=1x1x0n2D2D1
而我们这里 n = 5 n=5 n=5,因此:
( D 5 D 4 ) = ( 1 − x x 1 0 ) 3 ( D 2 D 1 ) = ( − x 3 + x 2 − x + 1 x 3 − x 2 + x x 2 − x + 1 − x 2 + x ) ( D 2 D 1 ) \begin{pmatrix} D_5 \\ \\ D_4 \end{pmatrix}=\begin{pmatrix} 1-x&amp;x\\ \\ 1 &amp;0 \end{pmatrix}^{3}\begin{pmatrix} D_2 \\ \\ D_1 \end{pmatrix}=\begin{pmatrix} -x^3+x^2-x+1&amp;x^3-x^2+x\\ \\ x^2-x+1 &amp;-x^2+x \end{pmatrix}\begin{pmatrix} D_2 \\ \\ D_1 \end{pmatrix} D5D4=1x1x03D2D1=x3+x2x+1x2x+1x3x2+xx2+xD

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值