线性代数张宇9讲 第六讲 线性方程组

例题六

例6.15  设 r ( A 4 × 4 ) = 2 r(\bm{A}_{4\times4})=2 r(A4×4)=2 η 1 , η 2 , η 3 \bm{\eta}_1,\bm{\eta}_2,\bm{\eta}_3 η1,η2,η3 A x = b \bm{Ax}=\bm{b} Ax=b 3 3 3个解向量,其中 { η 1 − η 2 = [ − 1 , 0 , 3 , − 4 ] T , η 1 + η 2 = [ 3 , 2 , 1 , − 2 ] T , η 3 + 2 η 2 = [ 5 , 1 , 0 , 3 ] T , \begin{cases}\bm{\eta}_1-\bm{\eta}_2=[-1,0,3,-4]^\mathrm{T},\\\bm{\eta}_1+\bm{\eta}_2=[3,2,1,-2]^\mathrm{T},\\\bm{\eta}_3+2\bm{\eta}_2=[5,1,0,3]^\mathrm{T},\end{cases} η1η2=[1,0,3,4]T,η1+η2=[3,2,1,2]T,η3+2η2=[5,1,0,3]T, A x = b \bm{Ax}=\bm{b} Ax=b的通解是______。

  由题设 A 4 × 4 x = b , r ( A ) = 2 , n = 4 \bm{A}_{4\times4}\bm{x}=\bm{b},r(\bm{A})=2,n=4 A4×4x=b,r(A)=2,n=4,知 A x = b \bm{Ax}=\bm{b} Ax=b的通解结构为 k 1 ξ 1 + k 2 ξ 2 + η k_1\bm{\xi}_1+k_2\bm{\xi}_2+\bm{\eta} k1ξ1+k2ξ2+η,其中 ξ 1 , ξ 2 \bm{\xi}_1,\bm{\xi}_2 ξ1,ξ2 A x = 0 \bm{Ax}=\bm{0} Ax=0的基础解系, η \bm{\eta} η A x = b \bm{Ax}=\bm{b} Ax=b的一个特解。
  因 A ( η 1 − η 2 ) = b − b = 0 , A [ 3 ( η 1 + η 2 ) − 2 ( η 3 + 2 η 2 ) ] = 6 b − 6 b = 0 \bm{A}(\bm{\eta}_1-\bm{\eta}_2)=\bm{b}-\bm{b}=\bm{0},\bm{A}[3(\bm{\eta}_1+\bm{\eta}_2)-2(\bm{\eta}_3+2\bm{\eta}_2)]=6\bm{b}-6\bm{b}=\bm{0} A(η1η2)=bb=0,A[3(η1+η2)2(η3+2η2)]=6b6b=0,故 η 1 − η 2 , 3 ( η 1 + η 2 ) − 2 ( η 3 + 2 η 2 ) \bm{\eta}_1-\bm{\eta}_2,3(\bm{\eta}_1+\bm{\eta}_2)-2(\bm{\eta}_3+2\bm{\eta}_2) η1η2,3(η1+η2)2(η3+2η2) A x = 0 \bm{Ax}=\bm{0} Ax=0的解向量,因此可取
ξ 1 = η 1 − η 2 = [ − 1 , 0 , 3 , − 4 ] T , ξ 2 = 3 ( η 1 + η 2 ) − 2 ( η 3 + 2 η 2 ) = [ − 1 , 4 , 3 , − 12 ] T . \bm{\xi}_1=\bm{\eta}_1-\bm{\eta}_2=[-1,0,3,-4]^\mathrm{T},\\ \bm{\xi}_2=3(\bm{\eta}_1+\bm{\eta}_2)-2(\bm{\eta}_3+2\bm{\eta}_2)=[-1,4,3,-12]^\mathrm{T}. ξ1=η1η2=[1,0,3,4]T,ξ2=3(η1+η2)2(η3+2η2)=[1,4,3,12]T.
  显然 ξ 1 , ξ 2 \bm{\xi}_1,\bm{\xi}_2 ξ1,ξ2线性无关。
  因 A [ 1 2 ( η 1 + η 2 ) ] = 1 2 ( b + b ) = b \bm{A}\left[\cfrac{1}{2}(\bm{\eta}_1+\bm{\eta}_2)\right]=\cfrac{1}{2}(\bm{b}+\bm{b})=\bm{b} A[21(η1+η2)]=21(b+b)=b,故 1 2 ( η 1 + η 2 ) \cfrac{1}{2}(\bm{\eta}_1+\bm{\eta}_2) 21(η1+η2) A x = b \bm{Ax}=\bm{b} Ax=b的一个特解,因此可取
η = 1 2 ( η 1 + η 2 ) = [ 3 2 , 1 , 1 2 , − 1 ] T , \bm{\eta}=\cfrac{1}{2}(\bm{\eta}_1+\bm{\eta}_2)=\left[\cfrac{3}{2},1,\cfrac{1}{2},-1\right]^\mathrm{T}, η=21(η1+η2)=[23,1,21,1]T,
  故 A x = b \bm{Ax}=\bm{b} Ax=b的通解为
k 1 ξ 1 + k 2 ξ 2 + η = k 1 [ − 1 , 0 , 3 , − 4 ] T + k 2 [ − 1 , 4 , 3 , − 12 ] T + [ 3 2 , 1 , 1 2 , − 1 ] T , k_1\bm{\xi}_1+k_2\bm{\xi}_2+\bm{\eta}=k_1[-1,0,3,-4]^\mathrm{T}+k_2[-1,4,3,-12]^\mathrm{T}+\left[\cfrac{3}{2},1,\cfrac{1}{2},-1\right]^\mathrm{T}, k1ξ1+k2ξ2+η=k1[1,0,3,4]T+k2[1,4,3,12]T+[23,1,21,1]T,
  其中 k 1 , k 2 k_1,k_2 k1,k2是任意常数。(这道题主要利用了解的结构求解

例6.27  设方程组 A x = b \bm{Ax}=\bm{b} Ax=b有解,证明: A T x = 0 \bm{A}^\mathrm{T}\bm{x}=\bm{0} ATx=0 [ A T b T ] x = 0 \begin{bmatrix}\bm{A}^\mathrm{T}\\\bm{b}^\mathrm{T}\end{bmatrix}\bm{x}=\bm{0} [ATbT]x=0是同解方程组。

  显然 [ A T b T ] x = 0 \begin{bmatrix}\bm{A}^\mathrm{T}\\\bm{b}^\mathrm{T}\end{bmatrix}\bm{x}=\bm{0} [ATbT]x=0的解必满足 A T x = 0 \bm{A}^\mathrm{T}\bm{x}=\bm{0} ATx=0
  因 A x = b \bm{Ax}=\bm{b} Ax=b有解,故 r ( A ) = r ( [ A , b ] ) r(\bm{A})=r([\bm{A},\bm{b}]) r(A)=r([A,b]),得 r ( [ A T b T ] ) = r ( A T ) r\left(\begin{bmatrix}\bm{A}^\mathrm{T}\\\bm{b}^\mathrm{T}\end{bmatrix}\right)=r(\bm{A}^\mathrm{T}) r([ATbT])=r(AT)。故 A T x = 0 \bm{A}^\mathrm{T}\bm{x}=\bm{0} ATx=0 [ A T b T ] x = 0 \begin{bmatrix}\bm{A}^\mathrm{T}\\\bm{b}^\mathrm{T}\end{bmatrix}\bm{x}=\bm{0} [ATbT]x=0的基础解系中所含解向量个数相等。
  由上知,方程组 A T x = 0 \bm{A}^\mathrm{T}\bm{x}=\bm{0} ATx=0 [ A T b T ] x = 0 \begin{bmatrix}\bm{A}^\mathrm{T}\\\bm{b}^\mathrm{T}\end{bmatrix}\bm{x}=\bm{0} [ATbT]x=0是同解方程组。(这道题主要利用了矩阵的秩求解

新版例题五

例5.12

在这里插入图片描述

在这里插入图片描述

例5.15

在这里插入图片描述

例5.16

在这里插入图片描述

在这里插入图片描述

新版习题五

5.3

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.6

在这里插入图片描述

在这里插入图片描述

5.8

在这里插入图片描述

在这里插入图片描述

5.13

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.14

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值