一、群的定义
群定义在二元组(S, ⊕ )上,S是一个集合, ⊕ 是一个运算。要求二元组满足群公理:
1、封闭性: ∀x,y∈S,x⊕y∈S (x,y可以相等)
2、结合律: ∀a,b,c∈S,a⊕b⊕c=a⊕(b⊕c) (a,b,c可以相等)
3、单位元: ∃e∈S,∀x∈S,e⊕x=x⊕e=x (x,e可以相等,我们往往用e代表单位元,也叫幺元)
4、逆元: ∀x∈S,∃y∈S,x⊕y=y⊕x=e (x,y可以相等,我们称y为x的逆元,记作 x−1 )
二、一些比较简单的想法。
如果 s⊕x=e ,我们称s是x的左逆元;如果 x⊕t=e ,我们称t是x的右逆元。
若x有左逆元,则x有相等且唯一的左右逆元;在S有限时,x有逆元与对x有消去律等价,而在S无限时消去律是逆元存在的必要条件。
证明:
①若 ∀a∈S,∃s,s⊕a=e ,则 ∀a∈S,a⊕s=e 。即a的左逆元就是a的右逆元。
设 t⊕s=e ,则 a⊕s=(t⊕s)⊕(a⊕s)=t⊕(s⊕a)⊕s=t⊕s=e .
②在有限集合中,逆元存在于消去律存在等价(即我们把群公理第四条换为 ∀a,x,y∈S,ax=ay<=>x=y )。
消去律: x⊕a=y⊕a 与 x=y 互为充要条件。
(消去律=>逆元)只需在等式两边 ⊕a−1 即可。
(逆元=>消去律)对于a,若 ∀x,y∈S,ax=ay<=>x=y ,则令 S′=ax|x∈
群论学习笔记
最新推荐文章于 2024-01-25 22:16:16 发布
![](https://img-home.csdnimg.cn/images/20240711042549.png)