群作用(Group Action)
左(右)群作用定义:
G G G是一个群, X X X是一个集合。 G G G在 X X X上的左群作用是一个映射 f : G × X → X f:G\times X\to X f:G×X→X,满足:
- f ( 1 , x ) = x , ∀ x ∈ G f\left( 1,x \right)=x,\text{ }\forall x\in G f(1,x)=x, ∀x∈G;
- f ( g 1 g 2 , x ) = f ( g 1 , f ( g 2 , x ) ) f\left( { {g}_{1}}{ {g}_{2}},x \right)=f\left( { {g}_{1}},f\left( { {g}_{2}},x \right) \right) f(g1g2,x)=f(g1,f(g2,x)), ∀ g 1 , g 2 ∈ G , ∀ x ∈ X \forall { {g}_{1}},{ {g}_{2}}\in G,\text{ }\forall x\in X ∀g1,g2∈G, ∀x∈X;
可记为 G ↻ X : = f G\circlearrowright X:=f G↻X:=f ( G G G acts on X X X)。
注:1.类似可考虑右作用 f : X × G → X f:X\times G\to X f:X×G→X;
2.左作用和右作用有着对称的关系,本门课不作特殊说明可以只讨论左作用。在抽象代数中,当考虑双模时需要同时考虑左作用和右作用。
群作用例子:
-
H < G , G ↻ ( G / H ) = f : G × G / H → G / H g 1 × g 2 H → g 1 g 2 H H<G,\text{ }G\circlearrowright \left( G/H \right)=f:\begin{matrix} G & \times & G/H & \to & G/H \\ { {g}_{1}} & \times & { {g}_{2}}H & \to & { {g}_{1}}{ {g}_{2}}H \\ \end{matrix} H<G, G↻(G/H)=f:Gg1××G/Hg2H→→G/Hg1g2H
验证:
1. f ( 1 , g H ) = 1 ⋅ g ⋅ H = g H f\left( 1,gH \right)=1\centerdot g\centerdot H=gH f(1,gH)=1⋅g⋅H=gH
2. f ( g 1 g 2 , g H ) = ( g 1 g 2 ) g H , f ( g 1 , f ( g 2 , g H ) ) = g 1 f ( g 2 , g H ) = g 1 ( g 2 g H ) f\left( { {g}_{1}}{ {g}_{2}},gH \right)=\left( { {g}_{1}}{ {g}_{2}} \right)gH,\text{ }f\left( { {g}_{1}},f\left( { {g}_{2}},gH \right) \right)={ {g}_{1}}f\left( { {g}_{2}},gH \right)={ {g}_{1}}\left( { {g}_{2}}gH \right) f(g1g2,gH)=(g1g2)gH, f(g1,f(g2,gH))=g1f(g2,gH)=g1(g2gH)
⇒ f ( g 1 g 2 , g H ) = f ( g 1 , f ( g 2 , g H ) ) \Rightarrow f\left( { {g}_{1}}{ {g}_{2}},gH \right)=f\left( { {g}_{1}},f\left( { {g}_{2}},gH \right) \right) ⇒f(g1g2,gH)=f(g1,f(g2,gH)) -
H ◃ G , G ↻ H = f : G × H → H g 1 × h → g 1 h g 1 − 1 H\triangleleft G,\text{ }G\circlearrowright H=f:\begin{matrix} G & \times & H & \to & H \\ { {g}_{1}} & \times & h & \to & { {g}_{1}}h{ {g}_{1}}^{-1} \\ \end{matrix} H◃G, G↻H=f:Gg1××Hh→→Hg1hg1−1
验证:
1. f ( 1 , h ) = 1 h 1 − 1 = h f\left( 1,h \right)=1h{ {1}^{-1}}=h f(1,h)=1h1−1=h
2. f ( g 1 g 2 , h ) = ( g 1 g 2 ) h ( g 1 g 2 ) − 1 = g 1 ( g 2 h g 2 − 1 ) g 1 − 1 f\left( { {g}_{1}}{ {g}_{2}},h \right)=\left( { {g}_{1}}{ {g}_{2}} \right)h{ {\left( { {g}_{1}}{ {g}_{2}} \right)}^{-1}}={ {g}_{1}}\left( { {g}_{2}}h{ {g}_{2}}^{-1} \right){ {g}_{1}}^{-1} f(g1g2,h)=(g1g2)h(g1g2)−1=g1(g2hg2−1)g1−1
f ( g 1 , f ( g 2 , h ) ) = f ( g 1 , g 2 h g 2 − 1 ) = g 1 ( g 2 h g 2 − 1 ) g 1 − 1 f\left( { {g}_{1}},f\left( { {g}_{2}},h \right) \right)=f\left( { {g}_{1}},{ {g}_{2}}h{ {g}_{2}}^{-1} \right)={ {g}_{1}}\left( { {g}_{2}}h{ {g}_{2}}^{-1} \right){ {g}_{1}}^{-1} f(g1,f(g2,h))=f(g1,g2hg2−1)=g1(g2hg2−1)g1−1
⇒ f ( g 1 g 2 , h ) = f ( g 1 , f ( g 2 , h ) ) \Rightarrow f\left( { {g}_{1}}{ {g}_{2}},h \right)=f\left( { {g}_{1}},f\left( { {g}_{2}},h \right) \right) ⇒f(g1g2,h)=f(g1,f(g2,h)).
群的轨迹(Orbit)与稳定子(Stabilizer)
群的轨迹定义:
G G G是一个群, X X X是一个集合, f ( g , x ) : G × X → X f\left( g,x \right):G\times X\to X f(g,x):G×X→X(简记为 g x gx gx)是一个左群作用。对某一个 x ∈ X x\in X x∈X, 定义以下集合为群的轨迹:
O x ( ⊆ X ) : = { g x ∣ ∀ g ∈ G } . {
{O}_{x}}\left( \subseteq X \right):=\left\{ \left. gx \right|\forall g\in G \right\}. Ox(⊆X):={
gx∣∀g∈G}.
群的稳定子定义:
G G G是一个群, X X X是一个集合, f ( g , x ) : G × X → X f\left( g,x \right):G\times X\to X f(g,x):G×X→X(简记为 g x gx gx)是一个左群作用。对某一个 x ∈ X x\in X x∈X, 定义以下集合为群的稳定子:
G x ( ⊆ G ) : = { g ∈ G ∣ g x = x } . {
{G}_{x}}\left( \subseteq G \right):=\left\{ \left. g\in G \right|gx=x \right\}. Gx(⊆G):={
g∈G∣gx=x}.
性质:
-
G x < G ; { {G}_{x}}<G; Gx<G;
证明:
显然有 G x ⊆ G { {G}_{x}}\subseteq G Gx⊆G,因此只需证明 G x { {G}_{x}} Gx是一个群。
∀ g 1 , g 2 ∈ G x \forall { {g}_{1}},{ {g}_{2}}\in { {G}_{x}} ∀g1,g2∈Gx,有 g 1 x = x , g 2 x = x ⇒ ( g 1 g 2 ) x = g 1 ( g 2 x ) = g 1 x = x ⇒ g 1 g 2 ∈ G x { {g}_{1}}x=x,\text{ }{ {g}_{2}}x=x\text{ }\Rightarrow \text{ }\left( { {g}_{1}}{ {g}_{2}} \right)x={ {g}_{1}}\left( { {g}_{2}}x \right)={ {g}_{1}}x=x\text{ }\Rightarrow \text{ }{ {g}_{1}}{ {g}_{2}}\in { {G}_{x}} g1x=x, g2x=x ⇒