Logistic regression逻辑回归

Logistic 函数(或者叫做 sigmoid函数),LR做的假设是线性可分,可以从上次GNB中得到这种假设。
ψ α ( v ) = 1 1 + e x p ( − α x ) \psi_{\alpha}(v)=\frac{1}{1+exp(-\alpha x)} ψα(v)=1+exp(αx)1 α \alpha α趋近于无穷的时候,上面Sigmoid趋向于阶越函数。

  • Logistic的分类边界
    P ( y = 1 ∣ x ) = 1 1 + e x p ( − ( w 0 + w T x ) ) P(y=1|x) = \frac{1}{1+exp(-(w_0 + w^Tx))} P(y=1x)=1+exp((w0+wTx))1
    P ( y = 0 ∣ x ) = 1 − P ( y = 1 ∣ x ) P(y=0|x) = 1-P(y=1|x) P(y=0x)=1P(y=1x)
    分类边界的决策面是线性的。
    分类边界为什么是线性的呢?
    l o g P ( y = 1 ∣ x ) P ( y = 0 ∣ x ) = 0 log\frac{P(y=1|x)}{P(y=0|x)} = 0 logP(y=0x)P(y=1x)=0
    l o g 1 1 + e x p ( − ( w 0 + w T x ) ) 1 1 + e x p ( w 0 + w T x ) = 0 log\frac{ \frac{1}{1+exp(-(w_0 + w^Tx))}}{\frac{1}{1+exp(w_0 + w^Tx)}} =0 log1+exp(w0+wTx)11+exp((w0+wTx))1=0
    化简得到
    w T x + w 0 = 0 w^Tx+w_0=0 wTx+w0=0

  • 重新表示一下Logistic regression
    P ( y = 1 ∣ x ) = 1 1 + e x p ( − ( w 0 + w T x ) ) P(y=1|x) = \frac{1}{1+exp(-(w_0 + w^Tx))} P(y=1x)=1+exp((w0+wTx))1
    输入变成 ( 1 x ) \binom{1}{x} (x1),模型的权重 ( w 0 w ) \binom{w_0}{w} (ww0)
    P ( y = 1 ∣ x ) = 1 1 + e x p ( − w T x ) P(y=1|x) = \frac{1}{1+exp(-w^Tx)} P(y=1x)=1+exp(wTx)1

多分类的Logistic Regression
y属于{1,…K}逻辑回归的公式可以定义为:
P ( Y = k ∣ x ) = e x p ( w k T x ) 1 + ∑ j = 1 K − 1 e x p ( w j T x ) , k < K P(Y=k|x) = \frac{exp(w^T_kx)}{1+\sum_{j=1}^{K-1}exp(w^T_jx)} , k<K P(Y=kx)=1+j=1K1exp(wjTx)exp(wkTx),k<K
对第K类,不用学习 w k w_k wk直接定义 w k = 0 w_k=0 wk=0,所以 1 = e x p ( w K T x ) 1 = exp(w^T_Kx) 1=exp(wKTx)

P ( Y = K ∣ x ) = 1 1 + ∑ j = 1 K − 1 e x p ( w j T x ) P(Y=K|x) = \frac{1}{1+\sum_{j=1}^{K-1}exp(w^T_jx)} P(Y=Kx)=1+j=1K1exp(wjTx)1上面的函数也叫做softmax 函数。

  • 多分类的Logistic Regression的分类边界是什么样的呢?
    Linear 线性, piecewise Linear 分段线性(拐点不可导),Smoothly nonlinear 一般非线性(相对piecewise Linear处处可导).
    多分类的Logistic Regression的分类边界是 piecewise Linear 分段线性

如何训练Logistic Regression

考虑简单的二分类问题
P ( y = 1 ∣ x ) = 1 1 + e x p ( − w T x ) P(y=1|x) = \frac{1}{1+exp(-w^Tx)} P(y=1x)=1+exp(wTx)1
训练数据
D = ( x i , y i ) j = 1 N D = {(x_i,y_i)}_{j=1}^{N} D=(xi,yi)j=1N

  • 可以使用MLE(极大似然)吗?
    w M L E ^ = a r g m a x w ∏ i = 1 N P ( x i , y i ∣ w ) \hat{w_{MLE}} = \underset{w}{argmax}\prod_{i=1}^NP(x_i,y_i|w) wMLE^=wargmaxi=1NP(xi,yiw)
    对于判别式的模型,我们有P(y|x),但是没有P(x)的值,所以没法计算p(x,y),所以不能直接使用MLE.

  • 使用最大化条件似然 Maximum Conditional Likelihood Estimate
    w ^ = a r g m a x w ∏ i = 1 N P ( y i ∣ x i , w ) \hat{w} = \underset{w}{argmax}\prod_{i=1}^NP(y_i|x_i,w) w^=wargmaxi=1NP(yixi,w)
    判别式的方法不去学习p(x),直接学习p(Y|X).
    带入 P ( y = 1 ∣ x ) = 1 1 + e x p ( − w T x ) P(y=1|x) = \frac{1}{1+exp(-w^Tx)} P(y=1x)=1+exp(wTx)1
    得到 £ ( w ) = l o g ∏ i = 1 N P ( y i ∣ x i , w ) = ∑ i [ y i w T x i − l o g ( 1 + e x p ( w T x i ) ) ] \pounds (w) = log\prod_{i=1}^NP(y_i|x_i,w)=\sum_i[y_iw^Tx_i -log(1+exp(w^Tx_i))] £(w)=logi=1NP(yixi,w)=i[yiwTxilog(1+exp(wTxi))]
    w ^ = a r g m a x w £ ( w ) \hat{w} =\underset{w} {argmax} \pounds (w) w^=wargmax£(w)
    £ ( w ) \pounds (w) £(w) 是log-concave 函数, − £ ( w ) -\pounds(w) £(w) 是convex函数。
    可以使用梯度下降更新 − £ ( w ) -\pounds(w) £(w)
    − ▽ w £ ( w ) = ( ∂ £ ( w ) ∂ £ ( w 0 ) ∂ £ ( w ) ∂ £ ( w d ) ) -\triangledown _w\pounds (w)=\binom{\frac{\partial \pounds (w)}{\partial \pounds (w_0)}}{\frac{\partial \pounds (w)}{\partial \pounds (w_d)}} w£(w)=(£(wd)£(w)£(w0)£(w))
    W t + 1 = W t − η ▽ w £ ( w ) ∣ w t W_{t+1} = W_t - \eta \triangledown _w\pounds (w)|_{w_t} Wt+1=Wtηw£(w)wt

sigmoid函数的求导
ψ ( v ) = 1 1 + e x p ( − v ) = > ▽ v ψ = ψ ( 1 − ψ ) \psi(v) = \frac{1}{1+exp(-v)} => \triangledown_v\psi=\psi(1-\psi) ψ(v)=1+exp(v)1=>vψ=ψ(1ψ)
w t + 1 = w t + η ∑ i = 1 N x i ( y i − μ i t ) , w h e r e μ i t = P ( y = 1 ∣ x i , w t ) w_{t+1} = w_t + \eta\sum_{i=1}^{N}x_i(y_i-\mu_i^t), where \quad \mu_i^t=P(y=1|x_i,w_t) wt+1=wt+ηi=1Nxi(yiμit),whereμit=P(y=1xi,wt)

梯度下降是最简单的优化的方法,更快的方法还有牛顿法,拟牛顿法(不用计算Hession矩阵),共轭梯度法(O(Nd)), IRLS(复杂度O(N+ d 3 d^3 d3)其中 d 3 d^3 d3是计算Hession矩阵的复杂度)。

一般不会直接训练logsitic regression,会过拟合,使用正则化来解决过拟合的问题。 w特别大或者发散的时候做一些惩罚。
λ 2 ∣ ∣ w ∣ ∣ 2 2 + £ ( D i w ) \frac{\lambda}{2}||w||_2^2+\pounds(D_iw) 2λw22+£(Diw)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝鲸123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值