时间序列模型---基本性质判断及相关计算
前言
本文主要简单整理几种线性时间序列模型的表达式,时间序列过程性质的判断(如判断稳定性等)和模型参数的选择,并提供一些手动计算部分模型ACF和PACF的方法。文章最后附有简单的R相关代码。还在学习中,如有错误,欢迎指正。
一、常用时间序列模型
Prerequisite
时间序列:
{
x
t
}
\left\{ x_t \right\}
{xt}
白噪声(white noise):
w
t
w_t
wt
w
t
∼
w
n
(
0
,
σ
w
2
)
w_t \sim {wn(0,\sigma_w^2})
wt∼wn(0,σw2) 后移算子(Backshift operator):
B
B
B
x
t
−
1
=
B
x
t
x
t
−
p
=
B
p
x
t
x_{t-1}=Bx_t \\ x_{t-p}=B^px_t
xt−1=Bxtxt−p=Bpxt 差分算子(Difference operator):
∇
\nabla
∇
∇
x
t
=
x
t
−
x
t
−
1
=
(
1
−
B
)
x
t
\nabla x_t=x_t-x_{t-1}=(1-B)x_t
∇xt=xt−xt−1=(1−B)xt d阶差分(Differenc of order d)
∇
d
=
(
1
−
B
)
d
\nabla^d=(1-B)^d
∇d=(1−B)d
1.自回归模型 —AR( p p p)
x t = ϕ 1 x t − 1 + ϕ 2 x t − 2 + . . . + ϕ p x t − p + w t , w t ∼ w n ( 0 , σ w 2 ) x_t=\phi_1x_{t-1}+\phi _2x_{t-2}+...+\phi _px_{t-p}+w_t, w_t\sim wn(0,\sigma_w^2) xt=ϕ1xt−1+ϕ2xt−2+...+ϕpxt−p+wt,wt∼wn(0,σw2) ϕ ( B ) = 1 − ϕ 1 B − ϕ 2 B 2 − . . . − ϕ p B p \phi(B)=1-\phi_1B-\phi_2B^2-...-\phi_pB^p ϕ(B)=1−ϕ1B−ϕ2B2−...−ϕpBp ϕ ( B ) x t = w t \phi(B)x_t=w_t ϕ(B)xt=wt
1.1 参数p的确定
①若已知时间序列过程表达式
x
t
x_t
xt,则根据表达式
x
t
x_t
xt中p的数值确定。
②若有一组时间序列数据,则画出其PACF图,PACF在滞后数为p的地方截尾,即PACF在 lag=p 处之后在2个标准差内。
1.2 平稳性判断(stationary)
将
ϕ
(
B
)
\phi(B)
ϕ(B)写成
ϕ
(
z
)
\phi(z)
ϕ(z),则有
ϕ
(
z
)
=
1
−
ϕ
1
z
−
ϕ
2
z
2
−
.
.
.
−
ϕ
p
z
p
\phi(z)=1-\phi_1z-\phi_2z^2-...-\phi_pz^p
ϕ(z)=1−ϕ1z−ϕ2z2−...−ϕpzp 若具有平稳性,则
ϕ
(
z
)
\phi(z)
ϕ(z)的根不在单位圆上
令
ϕ
(
z
)
=
0
\phi(z)=0
ϕ(z)=0,并求解。
∣
z
∣
≠
1
⟺
\lvert z\lvert\neq1\Longleftrightarrow
∣z∣=1⟺ 具有平稳性(stationary)
1.3 因果性判断(causal)
若具有因果性,则
ϕ
(
z
)
\phi(z)
ϕ(z)的根在单位圆外
令
ϕ
(
z
)
=
0
\phi(z)=0
ϕ(z)=0,并求解。
∣
z
∣
>
1
⟺
\lvert z\lvert>1\Longleftrightarrow
∣z∣>1⟺ 具有因果性(causal)
2. 移动平均模型 —MA(q)
x t = w t + θ 1 w t − 1 + θ 2 w t − 2 + . . . + θ q w t − q , w t ∼ w n ( 0 , σ w 2 ) x_t=w_t+\theta_1w_{t-1}+\theta _2w_{t-2}+...+\theta _qw_{t-q}, w_t\sim wn(0,\sigma_w^2) xt=wt+θ1wt−1+θ2wt−2+...+θqwt−q,wt∼wn(0,σw2) θ ( B ) = 1 + θ 1 B + θ 2 B 2 + . . . + θ q B q \theta(B)=1+\theta_1B+\theta_2B^2+...+\theta_qB^q θ(B)=1+θ1B+θ2B2+...+θqBq x t = θ ( B ) w t x_t=\theta(B)w_t xt=θ(B)wt
2.1 参数q的确定
①若已知时间序列过程表达式
x
t
x_t
xt,则根据表达式
x
t
x_t
xt中q的数值确定。
②若有一组时间序列数据,则画出其ACF图,ACF在滞后数为p的地方截尾,即ACF在 lag=q 处之后在2个标准差内。
2.2 平稳性判断(stationary)
对于移动平均模型,总是平稳的。
2.3 可逆性判断(invertible)
将
θ
(
B
)
\theta(B)
θ(B)写成
θ
(
z
)
\theta(z)
θ(z),则有
θ
(
z
)
=
1
+
θ
1
z
+
θ
2
z
2
+
.
.
.
+
θ
q
z
q
\theta(z)=1+\theta_1z+\theta_2z^2+...+\theta_qz^q
θ(z)=1+θ1z+θ2z2+...+θqzq 若具有可逆性性,则
θ
(
z
)
\theta(z)
θ(z)的根在单位圆外
令
θ
(
z
)
=
0
\theta(z)=0
θ(z)=0,并求解。
∣
z
∣
>
1
⟺
\lvert z\lvert>1\Longleftrightarrow
∣z∣>1⟺ 具有可逆性(invertible)
3. 自回归移动平均模型 —ARMA(p,q)
x t − ϕ 1 x t − 1 − ϕ 2 x t − 2 − . . . − ϕ p x t − p = w t + θ 1 w t − 1 + θ 2 w t − 2 + . . . + θ q w t − q , w t ∼ w n ( 0 , σ w 2 ) x_t-\phi_1x_{t-1}-\phi _2x_{t-2}-...-\phi _px_{t-p}=w_t+\theta_1w_{t-1}+\theta _2w_{t-2}+...+\theta _qw_{t-q}, w_t\sim wn(0,\sigma_w^2) xt−ϕ1xt−1−ϕ2xt−2−...−ϕpxt−p=wt+θ1wt−1+θ2wt−2+...+θqwt−q,wt∼wn(0,σw2) ϕ ( B ) x t = θ ( B ) w t \phi(B)x_t=\theta(B)w_t ϕ(B)xt=θ(B)wt
3.1 p,q
①根据
ϕ
(
B
)
\phi(B)
ϕ(B)和
θ
(
B
)
\theta(B)
θ(B)的阶数确定ARMA(p,q)
避免参数冗余(redundancy)
确定
ϕ
(
B
)
\phi(B)
ϕ(B)和
θ
(
B
)
\theta(B)
θ(B)的阶数时,两个表达式不能有相同的因子,即两个特征方程不能有相同的根。
ϕ
(
B
)
\phi(B)
ϕ(B)和
θ
(
B
)
\theta(B)
θ(B)有相同因子则模型表达式存在参数冗余。
②根据ACF图和PACF图酌情选择
3.2 稳定性,因果性,可逆性
ϕ ( z ) = 0 ⟹ { ∣ z ∣ ≠ 1 ⟺ 具 有 平 稳 性 ( s t a t i o n a r y ) ∣ z ∣ > 1 ⟺ 具 有 因 果 性 ( c a u s a l ) \phi(z)=0 \Longrightarrow \left\{ \begin{matrix} \lvert z\lvert\neq1\Longleftrightarrow具有平稳性(stationary)\\\lvert z\lvert>1\Longleftrightarrow具有因果性(causal) \end{matrix}\right. ϕ(z)=0⟹{∣z∣=1⟺具有平稳性(stationary)∣z∣>1⟺具有因果性(causal) θ ( z ) = 0 ⟹ ∣ z ∣ > 1 ⟺ 具 有 可 逆 性 ( i n v e r t i b l e ) \theta(z)=0 \Longrightarrow\lvert z\lvert>1\Longleftrightarrow 具有可逆性(invertible) θ(z)=0⟹∣z∣>1⟺具有可逆性(invertible)
3.3 转换系数 ψ , π \psi,\pi ψ,π
①对于具有因果性的模型,可计算
ψ
\psi
ψ
x
t
=
∑
j
=
0
∞
ψ
j
w
t
−
j
,
ψ
(
B
)
=
ψ
0
+
ψ
1
B
+
ψ
2
B
2
−
.
.
.
{
ϕ
(
B
)
x
t
=
θ
(
B
)
w
t
x
t
=
ψ
(
B
)
w
t
⟹
ϕ
(
B
)
ψ
(
B
)
=
θ
(
B
)
x_t=\sum_{j=0}^{\infty}\psi_jw_{t-j} , \psi(B)=\psi_0+\psi_1B+\psi_2B^2-... \\ \left\{\begin{matrix} \phi(B)x_t=\theta(B)w_t \\ x_t=\psi(B)w_t \end{matrix}\right.\Longrightarrow \phi(B)\psi(B)=\theta(B)
xt=j=0∑∞ψjwt−j,ψ(B)=ψ0+ψ1B+ψ2B2−...{ϕ(B)xt=θ(B)wtxt=ψ(B)wt⟹ϕ(B)ψ(B)=θ(B)
(
1
−
ϕ
1
B
−
ϕ
2
B
2
−
.
.
.
)
(
ψ
0
+
ψ
1
B
+
ψ
2
B
2
+
.
.
.
)
=
(
1
+
θ
1
B
+
θ
2
B
2
+
.
.
.
)
(1-\phi_1B-\phi_2B^2-...)(\psi_0+\psi_1B+\psi_2B^2+...)=(1+\theta_1B+\theta_2B^2+...)
(1−ϕ1B−ϕ2B2−...)(ψ0+ψ1B+ψ2B2+...)=(1+θ1B+θ2B2+...) 根据不同阶B前面的系数,可以写出
ϕ
,
ψ
\phi,\psi
ϕ,ψ和
θ
\theta
θ 的等式,进而求出系数
ψ
\psi
ψ。
②对于具有可逆性的模型,可计算
π
\pi
π
w
t
=
∑
j
=
0
∞
π
j
x
t
−
j
,
π
(
B
)
=
π
0
+
π
1
B
+
π
2
B
2
−
.
.
.
{
ϕ
(
B
)
x
t
=
θ
(
B
)
w
t
w
t
=
π
(
B
)
x
t
⟹
ϕ
(
B
)
=
π
(
B
)
θ
(
B
)
w_t=\sum_{j=0}^{\infty}\pi_jx_{t-j} , \pi(B)=\pi_0+\pi_1B+\pi_2B^2-... \\ \left\{\begin{matrix} \phi(B)x_t=\theta(B)w_t \\ w_t=\pi(B)x_t \end{matrix}\right. \Longrightarrow\phi(B)=\pi(B)\theta(B)
wt=j=0∑∞πjxt−j,π(B)=π0+π1B+π2B2−...{ϕ(B)xt=θ(B)wtwt=π(B)xt⟹ϕ(B)=π(B)θ(B)
(
1
−
ϕ
1
B
−
ϕ
2
B
2
−
.
.
.
)
=
(
1
+
θ
1
B
+
θ
2
B
2
+
.
.
.
)
(
π
0
+
π
1
B
+
π
2
B
2
+
.
.
.
)
(1-\phi_1B-\phi_2B^2-...)=(1+\theta_1B+\theta_2B^2+...)(\pi_0+\pi_1B+\pi_2B^2+...)
(1−ϕ1B−ϕ2B2−...)=(1+θ1B+θ2B2+...)(π0+π1B+π2B2+...) 根据不同阶B前面的系数,可以写出
ϕ
,
π
\phi,\pi
ϕ,π和
θ
\theta
θ 的等式,进而求出系数
π
\pi
π
4. ARIMA(p,d,q)
时间序列不平稳,进行d阶差分后为平稳序列ARMA
∇
d
x
t
=
(
1
−
B
)
d
x
t
ϕ
(
B
)
(
1
−
B
)
d
x
t
=
θ
(
B
)
w
t
\nabla^dx_t=(1-B)^dx_t \\ \phi(B)(1-B)^dx_t=\theta(B)w_t
∇dxt=(1−B)dxtϕ(B)(1−B)dxt=θ(B)wt 一阶差分------消除线性趋势
二阶差分------消除二次趋势
差分应适度,过少差分模型仍不平稳,过度差分会引入额外依赖。
5. 季节性模型
5.1 Pure seasonal ARMA
周期为s,记作
A
R
M
A
(
P
,
Q
)
s
ARMA(P,Q)_s
ARMA(P,Q)s
Φ
P
(
B
s
)
x
t
=
Θ
Q
(
B
s
)
w
t
Φ
P
(
B
s
)
=
1
−
Φ
1
B
s
−
Φ
2
B
2
s
−
.
.
.
−
Φ
P
B
P
s
Θ
Q
(
B
s
)
=
1
+
Θ
1
B
s
+
Θ
2
B
2
s
+
.
.
.
+
Θ
Q
B
Q
s
\Phi_P(B^s)x_t=\Theta_Q(B^s)w_t \\ \Phi_P(B^s)=1-\Phi_1B^s-\Phi_2B^{2s}-...-\Phi_PB^{Ps} \\ \Theta_Q(B^s)=1+\Theta_1B^s+ \Theta_2B^{2s}+...+\Theta_QB^{Qs}
ΦP(Bs)xt=ΘQ(Bs)wtΦP(Bs)=1−Φ1Bs−Φ2B2s−...−ΦPBPsΘQ(Bs)=1+Θ1Bs+Θ2B2s+...+ΘQBQs 因果性----
Φ
(
z
s
)
\Phi(z^s)
Φ(zs) 根在单位圆外
可逆性----
Θ
(
z
s
)
\Theta(z^s)
Θ(zs) 根在单位圆外
5.2 SARIMA
记作
A
R
I
M
A
(
p
,
d
,
q
)
×
(
P
,
D
,
Q
)
s
ARIMA(p,d,q)×(P,D,Q)_s
ARIMA(p,d,q)×(P,D,Q)s
∇
s
D
=
(
1
−
B
s
)
D
Φ
P
(
B
s
)
ϕ
(
B
)
∇
s
D
∇
d
x
t
=
Θ
Q
(
B
s
)
θ
(
B
)
w
t
\nabla _s^D=(1-B^s)^D \\ \Phi_P(B^s)\phi(B)\nabla _s^D\nabla^dx_t=\Theta_Q(B^s)\theta(B)w_t
∇sD=(1−Bs)DΦP(Bs)ϕ(B)∇sD∇dxt=ΘQ(Bs)θ(B)wt 因果性----
Φ
(
z
s
)
,
ϕ
(
z
)
\Phi(z^s),\phi(z)
Φ(zs),ϕ(z) 根在单位圆外
可逆性----
Θ
(
z
s
)
,
θ
(
z
)
\Theta(z^s),\theta(z)
Θ(zs),θ(z) 根在单位圆外
二、相关系数计算
自协方差函数Autocovariance function of {
x
t
x_t
xt} 记作
γ
(
h
)
\gamma(h)
γ(h)
根据
E
(
x
t
)
=
0
E(x_t)=0
E(xt)=0
γ
(
h
)
=
γ
(
t
+
h
,
t
)
=
C
o
v
(
x
t
+
h
,
x
t
)
=
E
[
(
x
t
+
h
−
E
(
x
t
+
h
)
(
x
t
−
E
(
x
t
)
]
=
E
(
x
t
+
h
x
t
)
\gamma(h)= \gamma(t+h,t)=Cov(x_{t+h},x_t)=E[(x_{t+h}-E(x_{t+h})(x_t-E(x_t)]=E(x_{t+h}x_t)
γ(h)=γ(t+h,t)=Cov(xt+h,xt)=E[(xt+h−E(xt+h)(xt−E(xt)]=E(xt+hxt)
对于白噪声
w
t
w_t
wt
γ
w
(
h
)
=
{
σ
w
2
,
h
=
0
0
,
o
t
h
e
r
w
i
s
e
\gamma_w(h)= \left\{\begin{matrix}\sigma_w^2,h=0\\ 0,otherwise \end{matrix}\right.
γw(h)={σw2,h=00,otherwise
1. 自相关ACF
自相关函数Autoccorelation function of {
x
t
x_t
xt} 记作
ρ
(
h
)
\rho(h)
ρ(h)
ρ
(
h
)
=
γ
(
h
)
γ
(
0
)
\rho(h)=\frac{\gamma(h)} {\gamma(0)}
ρ(h)=γ(0)γ(h) 显然,有
ρ
(
0
)
=
γ
(
0
)
γ
(
0
)
=
1
\rho(0)=\frac{\gamma(0)}{\gamma(0)}=1
ρ(0)=γ(0)γ(0)=1
1.1 AR(1)
表达式: x t = ϕ x t − 1 + w t , w t ∼ w n ( 0 , σ w 2 ) x t = ∑ j = 0 ∞ ϕ j w t − j x_t=\phi x_{t-1}+w_t,w_t\sim wn(0,\sigma_w^2) \\ x_t=\sum_{j=0}^{\infty} \phi^jw_{t-j} xt=ϕxt−1+wt,wt∼wn(0,σw2)xt=j=0∑∞ϕjwt−j 自协方差函数 γ ( h ) \gamma(h) γ(h)及ACF ρ ( h ) \rho(h) ρ(h) γ ( h ) = σ w 2 ϕ h 1 − ϕ 2 ρ ( h ) = ϕ h \gamma(h)=\frac{\sigma_w^2\phi^h}{1-\phi^2} \\ \rho(h)=\phi^h γ(h)=1−ϕ2σw2ϕhρ(h)=ϕh
1.2 AR(2)
表达式: x t = ϕ 1 x t − 1 + ϕ 2 x t − 2 + w t , w t ∼ w n ( 0 , σ w 2 ) x_t=\phi_1x_{t-1}+\phi_2x_{t-2}+w_t,w_t\sim wn(0,\sigma_w^2) xt=ϕ1xt−1+ϕ2xt−2+wt,wt∼wn(0,σw2) 对两边同乘 x t − h x_{t-h} xt−h并取期望 E ( x t x t − h ) = ϕ 1 E ( x t − 1 x t − h ) + ϕ 2 E ( x t − 2 x t − h ) γ ( h ) = ϕ 1 γ ( h − 1 ) + ϕ 2 γ ( h − 2 ) , h = 1 , 2... ρ ( h ) = ϕ 1 ρ ( h − 1 ) + ϕ 2 ρ ( h − 2 ) , h = 1 , 2... E(x_tx_{t-h})=\phi_1E(x_{t-1}x_{t-h} )+\phi_2E(x_{t-2}x_{t-h})\\ \gamma(h)=\phi_1\gamma(h-1)+\phi_2\gamma(h-2),h=1,2... \\ \rho(h)=\phi_1\rho(h-1)+\phi_2\rho(h-2),h=1,2... E(xtxt−h)=ϕ1E(xt−1xt−h)+ϕ2E(xt−2xt−h)γ(h)=ϕ1γ(h−1)+ϕ2γ(h−2),h=1,2...ρ(h)=ϕ1ρ(h−1)+ϕ2ρ(h−2),h=1,2... 可以推出: ρ ( 1 ) = ϕ 1 ρ ( 0 ) + ϕ 2 ρ ( 1 ) ρ ( 1 ) = ϕ 1 ρ ( 0 ) 1 − ϕ 2 = ϕ 1 1 − ϕ 2 \rho(1)=\phi_1\rho(0)+\phi_2\rho(1) \\\rho(1)= \frac{\phi_1\rho(0)}{1-\phi_2} = \frac{\phi_1}{1-\phi_2} ρ(1)=ϕ1ρ(0)+ϕ2ρ(1)ρ(1)=1−ϕ2ϕ1ρ(0)=1−ϕ2ϕ1 由齐次差分方程,得通解 : ϕ ( z ) = 0 ⟹ z 1 , z 2 ρ ( h ) = c 1 ( z 1 ) − h + c 2 ( z 2 ) − h \phi(z)=0 \Longrightarrow z_1,z_2 \\\rho(h)=c_1(z_1)^{-h}+c_2(z_2)^{-h} ϕ(z)=0⟹z1,z2ρ(h)=c1(z1)−h+c2(z2)−h根据得到的 ρ ( 0 ) , ρ ( 1 ) \rho(0),\rho(1) ρ(0),ρ(1) 代入通解,求得 c 1 , c 2 c_1,c_2 c1,c2,最终得到 ρ ( h ) \rho(h) ρ(h)
1.3 MA(1)
表达式: x t = w t + θ w t − 1 , w t ∼ w n ( 0 , σ w 2 ) w t = ∑ j = 0 ∞ ( − θ ) j x t − j x_t=w_t+\theta w_{t-1},w_t \sim wn(0,\sigma_w^2) \\ w_t=\sum_{j=0}^{\infty}(-\theta)^jx_{t-j} xt=wt+θwt−1,wt∼wn(0,σw2)wt=j=0∑∞(−θ)jxt−j 自协方差函数 γ ( h ) \gamma(h) γ(h): γ ( h ) = { ( 1 + θ 2 ) σ w 2 , h = 0 θ σ w 2 , h = 1 0 , h > 1 \gamma(h)=\left\{\begin{matrix} (1+\theta^2)\sigma_w^2,h=0 \\\theta\sigma_w^2,h=1 \\0,h>1 \end{matrix}\right. γ(h)=⎩⎨⎧(1+θ2)σw2,h=0θσw2,h=10,h>1 计算ACF ρ ( h ) \rho(h) ρ(h) ρ ( h ) = { θ 1 + θ 2 , h = 1 0 , h > 1 \rho(h)=\left\{\begin{matrix} \frac{\theta}{1+\theta^2},h=1 \\ 0,h>1 \end{matrix}\right. ρ(h)={1+θ2θ,h=10,h>1
1.4 MA(q)
自协方差函数: γ ( h ) = { σ w 2 ∑ j = 0 q − h θ j θ j + h , 0 ≤ h ≤ q 0 , h > q \gamma(h)=\left\{\begin{matrix} \sigma_w^2 \sum_{j=0}^{q-h} \theta_j\theta_{j+ h},0\leq h \leq q\\ 0,h>q \end{matrix}\right. γ(h)={σw2∑j=0q−hθjθj+h,0≤h≤q0,h>q 计算ACF ρ ( h ) \rho(h) ρ(h) ρ ( h ) = { ∑ j = 0 q − h θ j θ j + h 1 + θ 1 2 + θ 2 2 + . . . + θ q 2 , 1 ≤ h ≤ q 0 , h > q \rho(h)=\left\{\begin{matrix} \frac{ \sum_{j=0}^{q-h}\theta_j\theta_{j+h}}{1+\theta_1^2+\theta_2^2+...+\theta_q^2},1 \leq h\leq q \\ \\ 0,h>q \end{matrix}\right. ρ(h)=⎩⎪⎨⎪⎧1+θ12+θ22+...+θq2∑j=0q−hθjθj+h,1≤h≤q0,h>q
1.5 ARMA(p,q)
与求AR(
p
p
p)的ACF思路相同,将ARMA(p,q)转为AR(
p
p
p)的形式
已知系数
ψ
,
x
t
=
∑
j
=
0
∞
ψ
j
w
t
−
j
\psi,x_t=\sum_{j=0}^{\infty}\psi_jw_{t-j}
ψ,xt=∑j=0∞ψjwt−j
先由p阶齐次方程得到自相关函数通解:
γ
(
h
)
−
ϕ
1
γ
(
h
−
1
)
−
.
.
.
−
ϕ
p
γ
(
h
−
p
)
=
0
,
h
≥
m
a
x
(
p
,
q
+
1
)
\gamma(h)-\phi_1\gamma(h-1)-...-\phi_p\gamma(h-p)=0,h\geq max(p,q+1)
γ(h)−ϕ1γ(h−1)−...−ϕpγ(h−p)=0,h≥max(p,q+1) 再根据初始条件
γ
(
h
)
−
∑
j
=
1
p
ϕ
j
γ
(
h
−
j
)
=
σ
w
2
∑
j
=
h
q
θ
j
ψ
j
−
h
,
0
≤
h
<
m
a
x
(
p
,
q
+
1
)
\gamma(h)-\sum_{j=1}^p\phi_j\gamma(h-j)=\sigma_w^2 \sum_{j=h}^q\theta_j\psi_{j-h},0 \leq h<max(p,q+1)
γ(h)−j=1∑pϕjγ(h−j)=σw2j=h∑qθjψj−h,0≤h<max(p,q+1) 将得到的自相关函数等式分别除以
γ
(
0
)
\gamma(0)
γ(0),最终得出
ρ
(
h
)
\rho(h)
ρ(h)
2. 偏自相关PACF
平稳过程的偏自相关函数 Partial Autoccorelation function of {
x
t
x_t
xt} 记作
ϕ
h
h
\phi_{hh}
ϕhh
x
t
+
h
^
\hat{x_{t+h}}
xt+h^和
x
t
^
\hat{x_t}
xt^分别是{
x
t
+
1
,
x
t
+
2
,
.
.
.
,
x
t
+
h
−
1
x_{t+1},x_{t+2},...,x_{t+h-1}
xt+1,xt+2,...,xt+h−1} 对
x
t
+
h
x_{t+h}
xt+h和
x
t
x_t
xt的线性回归
ϕ
h
h
\phi_{hh}
ϕhh是
x
t
+
h
x_{t+h}
xt+h和
x
t
x_t
xt在移去{
x
t
+
1
,
x
t
+
2
,
.
.
.
,
x
t
+
h
−
1
x_{t+1},x_{t+2},...,x_{t+h-1}
xt+1,xt+2,...,xt+h−1}的影响后的相关系数
ϕ
11
=
c
o
r
r
(
x
t
+
1
,
x
t
)
=
ρ
(
1
)
ϕ
h
h
=
c
o
r
r
(
x
t
+
h
−
x
t
+
h
^
,
x
t
−
x
t
^
)
,
h
≥
2
\phi_{11}=corr(x_{t+1},x_t)=\rho(1) \\ \phi_{hh}=corr(x_{t+h}-\hat{x_{t+h}},x_t-\hat{x_t}),h\geq2
ϕ11=corr(xt+1,xt)=ρ(1)ϕhh=corr(xt+h−xt+h^,xt−xt^),h≥2
2.1 AR(1)
ϕ 11 = 1 ϕ h h = 0 , h > 1 \phi_{11}=1\\ \phi_{hh}=0 ,h>1 ϕ11=1ϕhh=0,h>1
2.2 AR(2)
ϕ 11 = 1 ϕ 22 = ϕ 2 ϕ h h = 0 , h > 2 \phi_{11}=1\\ \phi_{22}=\phi_2 \\ \phi_{hh}=0 ,h>2 ϕ11=1ϕ22=ϕ2ϕhh=0,h>2
2.3 MA(1)
ϕ h h = − ( − θ ) h ( 1 − θ 2 ) 1 − θ 2 ( h + 1 ) , h ≥ 1 \phi_{hh}=-\frac{(-\theta)^h(1-\theta^2)}{1-\theta^{2(h+1)}},h\geq1 ϕhh=−1−θ2(h+1)(−θ)h(1−θ2),h≥1
2.5 Durbin-Levinson算法
ϕ
h
h
=
ρ
(
h
)
−
∑
k
=
1
h
−
1
ϕ
h
−
1
,
k
ρ
(
h
−
k
)
1
−
∑
k
=
1
h
−
1
ϕ
h
−
1
,
k
ρ
(
k
)
\phi_{hh}=\frac{\rho(h)-\sum_{k=1}^{h-1}\phi_{h-1,k}\rho(h-k)}{1-\sum_{k=1}^{h-1}\phi_{h-1,k}\rho(k)}
ϕhh=1−∑k=1h−1ϕh−1,kρ(k)ρ(h)−∑k=1h−1ϕh−1,kρ(h−k) 其中,当
h
≥
2
h\geq2
h≥2时,
ϕ
h
k
=
ϕ
h
−
1
,
k
−
ϕ
h
h
ϕ
h
−
1
,
h
−
k
\phi_{hk}=\phi_{h-1,k}-\phi_{hh}\phi_{h-1,h-k}
ϕhk=ϕh−1,k−ϕhhϕh−1,h−k
对于AR(
p
p
p),
ϕ
p
p
=
ϕ
p
\phi_{pp}=\phi_p
ϕpp=ϕp,且
h
>
p
h>p
h>p 时,
ϕ
h
h
=
0
\phi_{hh}=0
ϕhh=0
2.4 Yule-Walker Equation
[
ρ
(
1
)
ρ
(
2
)
ρ
(
3
)
.
.
.
ρ
(
h
)
]
\begin{bmatrix} \rho(1)\\ \rho(2)\\ \rho(3)\\.\\.\\.\\ \rho(h) \end{bmatrix}
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡ρ(1)ρ(2)ρ(3)...ρ(h)⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤ =
[
1
ρ
(
1
)
ρ
(
2
)
.
.
ρ
(
h
−
1
)
ρ
(
1
)
1
ρ
(
1
)
.
.
ρ
(
h
−
2
)
ρ
(
2
)
ρ
(
1
)
1
.
.
ρ
(
h
−
3
)
.
.
.
.
.
.
.
.
.
.
.
.
ρ
(
h
−
1
)
ρ
(
h
−
2
)
ρ
(
h
−
3
)
.
.
1
]
\begin{bmatrix} 1&\rho(1)&\rho(2)&.&.&\rho(h-1)\\ \rho(1)&1&\rho(1)&.&.&\rho(h-2)\\ \rho(2)&\rho(1)&1&.&.&\rho(h-3)\\.&.&.&&&.\\.&.&.&&&.\\.&.&.&&&.\\ \rho(h-1)&\rho(h-2)&\rho(h-3)&.&.&1 \end{bmatrix}
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡1ρ(1)ρ(2)...ρ(h−1)ρ(1)1ρ(1)...ρ(h−2)ρ(2)ρ(1)1...ρ(h−3)........ρ(h−1)ρ(h−2)ρ(h−3)...1⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
[
ϕ
h
,
1
ϕ
h
,
2
ϕ
h
,
3
.
.
.
ϕ
h
,
h
]
\begin{bmatrix} \phi_{h,1}\\ \phi_{h,2}\\ \phi_{h,3}\\.\\.\\.\\ \phi_{h,h} \end{bmatrix}
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕh,1ϕh,2ϕh,3...ϕh,h⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
循环计算,每一组方程组的
ϕ
h
,
h
\phi_{h,h}
ϕh,h即为
ϕ
h
h
\phi_{hh}
ϕhh
3. 小结
AR( p p p) | MA(q) | ARMA(p,q) | |
---|---|---|---|
ACF | 拖尾 | 在lag=q之后截尾 | 拖尾 |
PACF | 在lag=p之后截尾 | 拖尾 | 拖尾 |
SARMA | AR( P P P) s _s s | MA(Q) s _s s | ARMA(P,Q) s _s s |
---|---|---|---|
ACF | 在lag=ks 处拖尾 (k=1,2,…) | 在lag=Qs处截尾 | 在lag=ks处拖尾 |
PACF | 在lag=Ps处截尾 | 在lag=ks处拖尾(k=1,2,…) | 在lag=ks处拖尾 |
在非季节性滞后点(h ≠ \neq =ks)处,值为0
三. R 代码
## E.g. AR(2) phi1=0.2,phi2=0.8
#生成100个模拟数
ar2 = arima.sim(list(order=c(2,0,0), ar=c(-.2,-.8)), n = 100)
#计算该模型的acf
ACF_AR2 = ARMAacf(ar=c(-.2,-.8), ma=0, 50)
#画出acf图
plot(ACF_AR2, type="h", xlab="lag")
abline(h=0)
title("AR(2)")
#计算该模型的pacf
PACF_AR2 = ARMAacf(ar=c(-.2,-.8), ma=0, 10,pacf=TRUE)
#画出pacf图
plot(PACF_AR2, type="h", xlab="lag")
title("AR(2)")
abline(h=0)
#使用 R包中的时间序列数据
library(astsa)
plot.ts(globtemp) #画出时间序列,观察趋势
acf(globtemp) #画出acf
pacf(globtemp) #画出pacf
#进行一阶差分
globtemp_d <- diff(globtemp)
plot.ts(globtemp_d)
#画acf和pacf
par(mfrow = c(2,1))
acf(globtemp_d)
pacf(globtemp_d)
#拟合ARIMA(0,1,2)
sarima(globtemp, 0, 1, 2)
#预测之后10个序列值
sarima.for(globtemp, 10, 0, 1, 2) #输出预测值,SE和预测图
#若为季节性时间序列模型
#使用 UnempRate 数据(月度数据),选择模型为(3,1,2)×(0,1,1),s=12
sarima(UnempRate,3,1,2,0,1,1,12) #拟合模型
sarima.for(UnempRate,12, 3,1,2,0,1,1,12) #预测下一年(12个月)
参考书目
Time Series Analysis and Its Applications with R examples
Time Series Analysis With Applications in R