【时间序列模型】基本性质判断及相关计算---附代码


前言

本文主要简单整理几种线性时间序列模型的表达式,时间序列过程性质的判断(如判断稳定性等)和模型参数的选择,并提供一些手动计算部分模型ACF和PACF的方法。文章最后附有简单的R相关代码。还在学习中,如有错误,欢迎指正。


一、常用时间序列模型

Prerequisite
时间序列: { x t } \left\{ x_t \right\} {xt}
白噪声(white noise): w t w_t wt w t ∼ w n ( 0 , σ w 2 ) w_t \sim {wn(0,\sigma_w^2}) wtwn(0,σw2) 后移算子(Backshift operator): B B B x t − 1 = B x t x t − p = B p x t x_{t-1}=Bx_t \\ x_{t-p}=B^px_t xt1=Bxtxtp=Bpxt 差分算子(Difference operator): ∇ \nabla ∇ x t = x t − x t − 1 = ( 1 − B ) x t \nabla x_t=x_t-x_{t-1}=(1-B)x_t xt=xtxt1=(1B)xt d阶差分(Differenc of order d) ∇ d = ( 1 − B ) d \nabla^d=(1-B)^d d=(1B)d

1.自回归模型 —AR( p p p)

x t = ϕ 1 x t − 1 + ϕ 2 x t − 2 + . . . + ϕ p x t − p + w t , w t ∼ w n ( 0 , σ w 2 ) x_t=\phi_1x_{t-1}+\phi _2x_{t-2}+...+\phi _px_{t-p}+w_t, w_t\sim wn(0,\sigma_w^2) xt=ϕ1xt1+ϕ2xt2+...+ϕpxtp+wtwtwn(0,σw2) ϕ ( B ) = 1 − ϕ 1 B − ϕ 2 B 2 − . . . − ϕ p B p \phi(B)=1-\phi_1B-\phi_2B^2-...-\phi_pB^p ϕ(B)=1ϕ1Bϕ2B2...ϕpBp ϕ ( B ) x t = w t \phi(B)x_t=w_t ϕ(B)xt=wt

1.1 参数p的确定

①若已知时间序列过程表达式 x t x_t xt,则根据表达式 x t x_t xt中p的数值确定。
②若有一组时间序列数据,则画出其PACF图,PACF在滞后数为p的地方截尾,即PACF在 lag=p 处之后在2个标准差内。

1.2 平稳性判断(stationary)

ϕ ( B ) \phi(B) ϕ(B)写成 ϕ ( z ) \phi(z) ϕ(z),则有 ϕ ( z ) = 1 − ϕ 1 z − ϕ 2 z 2 − . . . − ϕ p z p \phi(z)=1-\phi_1z-\phi_2z^2-...-\phi_pz^p ϕ(z)=1ϕ1zϕ2z2...ϕpzp 若具有平稳性,则 ϕ ( z ) \phi(z) ϕ(z)的根不在单位圆上
ϕ ( z ) = 0 \phi(z)=0 ϕ(z)=0,并求解。 ∣ z ∣ ≠ 1 ⟺ \lvert z\lvert\neq1\Longleftrightarrow z=1 具有平稳性(stationary)

1.3 因果性判断(causal)

若具有因果性,则 ϕ ( z ) \phi(z) ϕ(z)的根在单位圆外
ϕ ( z ) = 0 \phi(z)=0 ϕ(z)=0,并求解。 ∣ z ∣ > 1 ⟺ \lvert z\lvert>1\Longleftrightarrow z>1 具有因果性(causal)


2. 移动平均模型 —MA(q)

x t = w t + θ 1 w t − 1 + θ 2 w t − 2 + . . . + θ q w t − q , w t ∼ w n ( 0 , σ w 2 ) x_t=w_t+\theta_1w_{t-1}+\theta _2w_{t-2}+...+\theta _qw_{t-q}, w_t\sim wn(0,\sigma_w^2) xt=wt+θ1wt1+θ2wt2+...+θqwtqwtwn(0,σw2) θ ( B ) = 1 + θ 1 B + θ 2 B 2 + . . . + θ q B q \theta(B)=1+\theta_1B+\theta_2B^2+...+\theta_qB^q θ(B)=1+θ1B+θ2B2+...+θqBq x t = θ ( B ) w t x_t=\theta(B)w_t xt=θ(B)wt

2.1 参数q的确定

①若已知时间序列过程表达式 x t x_t xt,则根据表达式 x t x_t xt中q的数值确定。
②若有一组时间序列数据,则画出其ACF图,ACF在滞后数为p的地方截尾,即ACF在 lag=q 处之后在2个标准差内。

2.2 平稳性判断(stationary)

对于移动平均模型,总是平稳的。

2.3 可逆性判断(invertible)

θ ( B ) \theta(B) θ(B)写成 θ ( z ) \theta(z) θ(z),则有 θ ( z ) = 1 + θ 1 z + θ 2 z 2 + . . . + θ q z q \theta(z)=1+\theta_1z+\theta_2z^2+...+\theta_qz^q θ(z)=1+θ1z+θ2z2+...+θqzq 若具有可逆性性,则 θ ( z ) \theta(z) θ(z)的根在单位圆外
θ ( z ) = 0 \theta(z)=0 θ(z)=0,并求解。 ∣ z ∣ > 1 ⟺ \lvert z\lvert>1\Longleftrightarrow z>1 具有可逆性(invertible)


3. 自回归移动平均模型 —ARMA(p,q)

x t − ϕ 1 x t − 1 − ϕ 2 x t − 2 − . . . − ϕ p x t − p = w t + θ 1 w t − 1 + θ 2 w t − 2 + . . . + θ q w t − q , w t ∼ w n ( 0 , σ w 2 ) x_t-\phi_1x_{t-1}-\phi _2x_{t-2}-...-\phi _px_{t-p}=w_t+\theta_1w_{t-1}+\theta _2w_{t-2}+...+\theta _qw_{t-q}, w_t\sim wn(0,\sigma_w^2) xtϕ1xt1ϕ2xt2...ϕpxtp=wt+θ1wt1+θ2wt2+...+θqwtqwtwn(0,σw2) ϕ ( B ) x t = θ ( B ) w t \phi(B)x_t=\theta(B)w_t ϕ(B)xt=θ(B)wt

3.1 p,q

①根据 ϕ ( B ) \phi(B) ϕ(B) θ ( B ) \theta(B) θ(B)的阶数确定ARMA(p,q)
避免参数冗余(redundancy)
确定 ϕ ( B ) \phi(B) ϕ(B) θ ( B ) \theta(B) θ(B)的阶数时,两个表达式不能有相同的因子,即两个特征方程不能有相同的根。 ϕ ( B ) \phi(B) ϕ(B) θ ( B ) \theta(B) θ(B)有相同因子则模型表达式存在参数冗余。
②根据ACF图和PACF图酌情选择

3.2 稳定性,因果性,可逆性

ϕ ( z ) = 0 ⟹ { ∣ z ∣ ≠ 1 ⟺ 具 有 平 稳 性 ( s t a t i o n a r y ) ∣ z ∣ > 1 ⟺ 具 有 因 果 性 ( c a u s a l ) \phi(z)=0 \Longrightarrow \left\{ \begin{matrix} \lvert z\lvert\neq1\Longleftrightarrow具有平稳性(stationary)\\\lvert z\lvert>1\Longleftrightarrow具有因果性(causal) \end{matrix}\right. ϕ(z)=0{z=1(stationary)z>1(causal) θ ( z ) = 0 ⟹ ∣ z ∣ > 1 ⟺ 具 有 可 逆 性 ( i n v e r t i b l e ) \theta(z)=0 \Longrightarrow\lvert z\lvert>1\Longleftrightarrow 具有可逆性(invertible) θ(z)=0z>1(invertible)

3.3 转换系数 ψ , π \psi,\pi ψ,π

①对于具有因果性的模型,可计算 ψ \psi ψ x t = ∑ j = 0 ∞ ψ j w t − j , ψ ( B ) = ψ 0 + ψ 1 B + ψ 2 B 2 − . . . { ϕ ( B ) x t = θ ( B ) w t x t = ψ ( B ) w t ⟹ ϕ ( B ) ψ ( B ) = θ ( B ) x_t=\sum_{j=0}^{\infty}\psi_jw_{t-j} , \psi(B)=\psi_0+\psi_1B+\psi_2B^2-... \\ \left\{\begin{matrix} \phi(B)x_t=\theta(B)w_t \\ x_t=\psi(B)w_t \end{matrix}\right.\Longrightarrow \phi(B)\psi(B)=\theta(B) xt=j=0ψjwtj,ψ(B)=ψ0+ψ1B+ψ2B2...{ϕ(B)xt=θ(B)wtxt=ψ(B)wtϕ(B)ψ(B)=θ(B) ( 1 − ϕ 1 B − ϕ 2 B 2 − . . . ) ( ψ 0 + ψ 1 B + ψ 2 B 2 + . . . ) = ( 1 + θ 1 B + θ 2 B 2 + . . . ) (1-\phi_1B-\phi_2B^2-...)(\psi_0+\psi_1B+\psi_2B^2+...)=(1+\theta_1B+\theta_2B^2+...) (1ϕ1Bϕ2B2...)(ψ0+ψ1B+ψ2B2+...)=(1+θ1B+θ2B2+...) 根据不同阶B前面的系数,可以写出 ϕ , ψ \phi,\psi ϕ,ψ θ \theta θ 的等式,进而求出系数 ψ \psi ψ
②对于具有可逆性的模型,可计算 π \pi π w t = ∑ j = 0 ∞ π j x t − j , π ( B ) = π 0 + π 1 B + π 2 B 2 − . . . { ϕ ( B ) x t = θ ( B ) w t w t = π ( B ) x t ⟹ ϕ ( B ) = π ( B ) θ ( B ) w_t=\sum_{j=0}^{\infty}\pi_jx_{t-j} , \pi(B)=\pi_0+\pi_1B+\pi_2B^2-... \\ \left\{\begin{matrix} \phi(B)x_t=\theta(B)w_t \\ w_t=\pi(B)x_t \end{matrix}\right. \Longrightarrow\phi(B)=\pi(B)\theta(B) wt=j=0πjxtj,π(B)=π0+π1B+π2B2...{ϕ(B)xt=θ(B)wtwt=π(B)xtϕ(B)=π(B)θ(B) ( 1 − ϕ 1 B − ϕ 2 B 2 − . . . ) = ( 1 + θ 1 B + θ 2 B 2 + . . . ) ( π 0 + π 1 B + π 2 B 2 + . . . ) (1-\phi_1B-\phi_2B^2-...)=(1+\theta_1B+\theta_2B^2+...)(\pi_0+\pi_1B+\pi_2B^2+...) (1ϕ1Bϕ2B2...)=(1+θ1B+θ2B2+...)(π0+π1B+π2B2+...) 根据不同阶B前面的系数,可以写出 ϕ , π \phi,\pi ϕ,π θ \theta θ 的等式,进而求出系数 π \pi π


4. ARIMA(p,d,q)

时间序列不平稳,进行d阶差分后为平稳序列ARMA
∇ d x t = ( 1 − B ) d x t ϕ ( B ) ( 1 − B ) d x t = θ ( B ) w t \nabla^dx_t=(1-B)^dx_t \\ \phi(B)(1-B)^dx_t=\theta(B)w_t dxt=(1B)dxtϕ(B)(1B)dxt=θ(B)wt 一阶差分------消除线性趋势
二阶差分------消除二次趋势
差分应适度,过少差分模型仍不平稳,过度差分会引入额外依赖。


5. 季节性模型

5.1 Pure seasonal ARMA

周期为s,记作 A R M A ( P , Q ) s ARMA(P,Q)_s ARMA(P,Q)s Φ P ( B s ) x t = Θ Q ( B s ) w t Φ P ( B s ) = 1 − Φ 1 B s − Φ 2 B 2 s − . . . − Φ P B P s Θ Q ( B s ) = 1 + Θ 1 B s + Θ 2 B 2 s + . . . + Θ Q B Q s \Phi_P(B^s)x_t=\Theta_Q(B^s)w_t \\ \Phi_P(B^s)=1-\Phi_1B^s-\Phi_2B^{2s}-...-\Phi_PB^{Ps} \\ \Theta_Q(B^s)=1+\Theta_1B^s+ \Theta_2B^{2s}+...+\Theta_QB^{Qs} ΦP(Bs)xt=ΘQ(Bs)wtΦP(Bs)=1Φ1BsΦ2B2s...ΦPBPsΘQ(Bs)=1+Θ1Bs+Θ2B2s+...+ΘQBQs 因果性---- Φ ( z s ) \Phi(z^s) Φ(zs) 根在单位圆外
可逆性---- Θ ( z s ) \Theta(z^s) Θ(zs) 根在单位圆外

5.2 SARIMA

记作 A R I M A ( p , d , q ) × ( P , D , Q ) s ARIMA(p,d,q)×(P,D,Q)_s ARIMA(p,d,q)×(P,D,Q)s ∇ s D = ( 1 − B s ) D Φ P ( B s ) ϕ ( B ) ∇ s D ∇ d x t = Θ Q ( B s ) θ ( B ) w t \nabla _s^D=(1-B^s)^D \\ \Phi_P(B^s)\phi(B)\nabla _s^D\nabla^dx_t=\Theta_Q(B^s)\theta(B)w_t sD=(1Bs)DΦP(Bs)ϕ(B)sDdxt=ΘQ(Bs)θ(B)wt 因果性---- Φ ( z s ) , ϕ ( z ) \Phi(z^s),\phi(z) Φ(zs),ϕ(z) 根在单位圆外
可逆性---- Θ ( z s ) , θ ( z ) \Theta(z^s),\theta(z) Θ(zs),θ(z) 根在单位圆外



二、相关系数计算

自协方差函数Autocovariance function of { x t x_t xt} 记作 γ ( h ) \gamma(h) γ(h)
根据 E ( x t ) = 0 E(x_t)=0 E(xt)=0
γ ( h ) = γ ( t + h , t ) = C o v ( x t + h , x t ) = E [ ( x t + h − E ( x t + h ) ( x t − E ( x t ) ] = E ( x t + h x t ) \gamma(h)= \gamma(t+h,t)=Cov(x_{t+h},x_t)=E[(x_{t+h}-E(x_{t+h})(x_t-E(x_t)]=E(x_{t+h}x_t) γ(h)=γ(t+h,t)=Cov(xt+h,xt)=E[(xt+hE(xt+h)(xtE(xt)]=E(xt+hxt)
对于白噪声 w t w_t wt γ w ( h ) = { σ w 2 , h = 0 0 , o t h e r w i s e \gamma_w(h)= \left\{\begin{matrix}\sigma_w^2,h=0\\ 0,otherwise \end{matrix}\right. γw(h)={σw2,h=00,otherwise

1. 自相关ACF

自相关函数Autoccorelation function of { x t x_t xt} 记作 ρ ( h ) \rho(h) ρ(h)
ρ ( h ) = γ ( h ) γ ( 0 ) \rho(h)=\frac{\gamma(h)} {\gamma(0)} ρ(h)=γ(0)γ(h) 显然,有 ρ ( 0 ) = γ ( 0 ) γ ( 0 ) = 1 \rho(0)=\frac{\gamma(0)}{\gamma(0)}=1 ρ(0)=γ(0)γ(0)=1

1.1 AR(1)

表达式: x t = ϕ x t − 1 + w t , w t ∼ w n ( 0 , σ w 2 ) x t = ∑ j = 0 ∞ ϕ j w t − j x_t=\phi x_{t-1}+w_t,w_t\sim wn(0,\sigma_w^2) \\ x_t=\sum_{j=0}^{\infty} \phi^jw_{t-j} xt=ϕxt1+wt,wtwn(0,σw2)xt=j=0ϕjwtj 自协方差函数 γ ( h ) \gamma(h) γ(h)及ACF ρ ( h ) \rho(h) ρ(h) γ ( h ) = σ w 2 ϕ h 1 − ϕ 2 ρ ( h ) = ϕ h \gamma(h)=\frac{\sigma_w^2\phi^h}{1-\phi^2} \\ \rho(h)=\phi^h γ(h)=1ϕ2σw2ϕhρ(h)=ϕh

1.2 AR(2)

表达式: x t = ϕ 1 x t − 1 + ϕ 2 x t − 2 + w t , w t ∼ w n ( 0 , σ w 2 ) x_t=\phi_1x_{t-1}+\phi_2x_{t-2}+w_t,w_t\sim wn(0,\sigma_w^2) xt=ϕ1xt1+ϕ2xt2+wt,wtwn(0,σw2) 对两边同乘 x t − h x_{t-h} xth并取期望 E ( x t x t − h ) = ϕ 1 E ( x t − 1 x t − h ) + ϕ 2 E ( x t − 2 x t − h ) γ ( h ) = ϕ 1 γ ( h − 1 ) + ϕ 2 γ ( h − 2 ) , h = 1 , 2... ρ ( h ) = ϕ 1 ρ ( h − 1 ) + ϕ 2 ρ ( h − 2 ) , h = 1 , 2... E(x_tx_{t-h})=\phi_1E(x_{t-1}x_{t-h} )+\phi_2E(x_{t-2}x_{t-h})\\ \gamma(h)=\phi_1\gamma(h-1)+\phi_2\gamma(h-2),h=1,2... \\ \rho(h)=\phi_1\rho(h-1)+\phi_2\rho(h-2),h=1,2... E(xtxth)=ϕ1E(xt1xth)+ϕ2E(xt2xth)γ(h)=ϕ1γ(h1)+ϕ2γ(h2)h=1,2...ρ(h)=ϕ1ρ(h1)+ϕ2ρ(h2)h=1,2... 可以推出: ρ ( 1 ) = ϕ 1 ρ ( 0 ) + ϕ 2 ρ ( 1 ) ρ ( 1 ) = ϕ 1 ρ ( 0 ) 1 − ϕ 2 = ϕ 1 1 − ϕ 2 \rho(1)=\phi_1\rho(0)+\phi_2\rho(1) \\\rho(1)= \frac{\phi_1\rho(0)}{1-\phi_2} = \frac{\phi_1}{1-\phi_2} ρ(1)=ϕ1ρ(0)+ϕ2ρ(1)ρ(1)=1ϕ2ϕ1ρ(0)=1ϕ2ϕ1 由齐次差分方程,得通解 : ϕ ( z ) = 0 ⟹ z 1 , z 2 ρ ( h ) = c 1 ( z 1 ) − h + c 2 ( z 2 ) − h \phi(z)=0 \Longrightarrow z_1,z_2 \\\rho(h)=c_1(z_1)^{-h}+c_2(z_2)^{-h} ϕ(z)=0z1,z2ρ(h)=c1(z1)h+c2(z2)h根据得到的 ρ ( 0 ) , ρ ( 1 ) \rho(0),\rho(1) ρ(0),ρ(1) 代入通解,求得 c 1 , c 2 c_1,c_2 c1,c2,最终得到 ρ ( h ) \rho(h) ρ(h)

1.3 MA(1)

表达式: x t = w t + θ w t − 1 , w t ∼ w n ( 0 , σ w 2 ) w t = ∑ j = 0 ∞ ( − θ ) j x t − j x_t=w_t+\theta w_{t-1},w_t \sim wn(0,\sigma_w^2) \\ w_t=\sum_{j=0}^{\infty}(-\theta)^jx_{t-j} xt=wt+θwt1,wtwn(0,σw2)wt=j=0(θ)jxtj 自协方差函数 γ ( h ) \gamma(h) γ(h) γ ( h ) = { ( 1 + θ 2 ) σ w 2 , h = 0 θ σ w 2 , h = 1 0 , h > 1 \gamma(h)=\left\{\begin{matrix} (1+\theta^2)\sigma_w^2,h=0 \\\theta\sigma_w^2,h=1 \\0,h>1 \end{matrix}\right. γ(h)=(1+θ2)σw2h=0θσw2h=10h>1 计算ACF ρ ( h ) \rho(h) ρ(h) ρ ( h ) = { θ 1 + θ 2 , h = 1 0 , h > 1 \rho(h)=\left\{\begin{matrix} \frac{\theta}{1+\theta^2},h=1 \\ 0,h>1 \end{matrix}\right. ρ(h)={1+θ2θh=10h>1

1.4 MA(q)

自协方差函数: γ ( h ) = { σ w 2 ∑ j = 0 q − h θ j θ j + h , 0 ≤ h ≤ q 0 , h > q \gamma(h)=\left\{\begin{matrix} \sigma_w^2 \sum_{j=0}^{q-h} \theta_j\theta_{j+ h},0\leq h \leq q\\ 0,h>q \end{matrix}\right. γ(h)={σw2j=0qhθjθj+h0hq0h>q 计算ACF ρ ( h ) \rho(h) ρ(h) ρ ( h ) = { ∑ j = 0 q − h θ j θ j + h 1 + θ 1 2 + θ 2 2 + . . . + θ q 2 , 1 ≤ h ≤ q 0 , h > q \rho(h)=\left\{\begin{matrix} \frac{ \sum_{j=0}^{q-h}\theta_j\theta_{j+h}}{1+\theta_1^2+\theta_2^2+...+\theta_q^2},1 \leq h\leq q \\ \\ 0,h>q \end{matrix}\right. ρ(h)=1+θ12+θ22+...+θq2j=0qhθjθj+h1hq0h>q

1.5 ARMA(p,q)

与求AR( p p p)的ACF思路相同,将ARMA(p,q)转为AR( p p p)的形式
已知系数 ψ , x t = ∑ j = 0 ∞ ψ j w t − j \psi,x_t=\sum_{j=0}^{\infty}\psi_jw_{t-j} ψxt=j=0ψjwtj
先由p阶齐次方程得到自相关函数通解: γ ( h ) − ϕ 1 γ ( h − 1 ) − . . . − ϕ p γ ( h − p ) = 0 , h ≥ m a x ( p , q + 1 ) \gamma(h)-\phi_1\gamma(h-1)-...-\phi_p\gamma(h-p)=0,h\geq max(p,q+1) γ(h)ϕ1γ(h1)...ϕpγ(hp)=0hmax(p,q+1) 再根据初始条件 γ ( h ) − ∑ j = 1 p ϕ j γ ( h − j ) = σ w 2 ∑ j = h q θ j ψ j − h , 0 ≤ h < m a x ( p , q + 1 ) \gamma(h)-\sum_{j=1}^p\phi_j\gamma(h-j)=\sigma_w^2 \sum_{j=h}^q\theta_j\psi_{j-h},0 \leq h<max(p,q+1) γ(h)j=1pϕjγ(hj)=σw2j=hqθjψjh0h<max(p,q+1) 将得到的自相关函数等式分别除以 γ ( 0 ) \gamma(0) γ(0),最终得出 ρ ( h ) \rho(h) ρ(h)


2. 偏自相关PACF

平稳过程的偏自相关函数 Partial Autoccorelation function of { x t x_t xt} 记作 ϕ h h \phi_{hh} ϕhh
x t + h ^ \hat{x_{t+h}} xt+h^ x t ^ \hat{x_t} xt^分别是{ x t + 1 , x t + 2 , . . . , x t + h − 1 x_{t+1},x_{t+2},...,x_{t+h-1} xt+1,xt+2,...,xt+h1} 对 x t + h x_{t+h} xt+h x t x_t xt的线性回归
ϕ h h \phi_{hh} ϕhh x t + h x_{t+h} xt+h x t x_t xt在移去{ x t + 1 , x t + 2 , . . . , x t + h − 1 x_{t+1},x_{t+2},...,x_{t+h-1} xt+1,xt+2,...,xt+h1}的影响后的相关系数
ϕ 11 = c o r r ( x t + 1 , x t ) = ρ ( 1 ) ϕ h h = c o r r ( x t + h − x t + h ^ , x t − x t ^ ) , h ≥ 2 \phi_{11}=corr(x_{t+1},x_t)=\rho(1) \\ \phi_{hh}=corr(x_{t+h}-\hat{x_{t+h}},x_t-\hat{x_t}),h\geq2 ϕ11=corr(xt+1,xt)=ρ(1)ϕhh=corr(xt+hxt+h^,xtxt^)h2

2.1 AR(1)

ϕ 11 = 1 ϕ h h = 0 , h > 1 \phi_{11}=1\\ \phi_{hh}=0 ,h>1 ϕ11=1ϕhh=0,h>1

2.2 AR(2)

ϕ 11 = 1 ϕ 22 = ϕ 2 ϕ h h = 0 , h > 2 \phi_{11}=1\\ \phi_{22}=\phi_2 \\ \phi_{hh}=0 ,h>2 ϕ11=1ϕ22=ϕ2ϕhh=0,h>2

2.3 MA(1)

ϕ h h = − ( − θ ) h ( 1 − θ 2 ) 1 − θ 2 ( h + 1 ) , h ≥ 1 \phi_{hh}=-\frac{(-\theta)^h(1-\theta^2)}{1-\theta^{2(h+1)}},h\geq1 ϕhh=1θ2(h+1)(θ)h(1θ2)h1

2.5 Durbin-Levinson算法

ϕ h h = ρ ( h ) − ∑ k = 1 h − 1 ϕ h − 1 , k ρ ( h − k ) 1 − ∑ k = 1 h − 1 ϕ h − 1 , k ρ ( k ) \phi_{hh}=\frac{\rho(h)-\sum_{k=1}^{h-1}\phi_{h-1,k}\rho(h-k)}{1-\sum_{k=1}^{h-1}\phi_{h-1,k}\rho(k)} ϕhh=1k=1h1ϕh1,kρ(k)ρ(h)k=1h1ϕh1,kρ(hk) 其中,当 h ≥ 2 h\geq2 h2时, ϕ h k = ϕ h − 1 , k − ϕ h h ϕ h − 1 , h − k \phi_{hk}=\phi_{h-1,k}-\phi_{hh}\phi_{h-1,h-k} ϕhk=ϕh1,kϕhhϕh1,hk
对于AR( p p p), ϕ p p = ϕ p \phi_{pp}=\phi_p ϕpp=ϕp,且 h > p h>p h>p 时, ϕ h h = 0 \phi_{hh}=0 ϕhh=0

2.4 Yule-Walker Equation

[ ρ ( 1 ) ρ ( 2 ) ρ ( 3 ) . . . ρ ( h ) ] \begin{bmatrix} \rho(1)\\ \rho(2)\\ \rho(3)\\.\\.\\.\\ \rho(h) \end{bmatrix} ρ(1)ρ(2)ρ(3)...ρ(h) = [ 1 ρ ( 1 ) ρ ( 2 ) . . ρ ( h − 1 ) ρ ( 1 ) 1 ρ ( 1 ) . . ρ ( h − 2 ) ρ ( 2 ) ρ ( 1 ) 1 . . ρ ( h − 3 ) . . . . . . . . . . . . ρ ( h − 1 ) ρ ( h − 2 ) ρ ( h − 3 ) . . 1 ] \begin{bmatrix} 1&\rho(1)&\rho(2)&.&.&\rho(h-1)\\ \rho(1)&1&\rho(1)&.&.&\rho(h-2)\\ \rho(2)&\rho(1)&1&.&.&\rho(h-3)\\.&.&.&&&.\\.&.&.&&&.\\.&.&.&&&.\\ \rho(h-1)&\rho(h-2)&\rho(h-3)&.&.&1 \end{bmatrix} 1ρ(1)ρ(2)...ρ(h1)ρ(1)1ρ(1)...ρ(h2)ρ(2)ρ(1)1...ρ(h3)........ρ(h1)ρ(h2)ρ(h3)...1 [ ϕ h , 1 ϕ h , 2 ϕ h , 3 . . . ϕ h , h ] \begin{bmatrix} \phi_{h,1}\\ \phi_{h,2}\\ \phi_{h,3}\\.\\.\\.\\ \phi_{h,h} \end{bmatrix} ϕh,1ϕh,2ϕh,3...ϕh,h
循环计算,每一组方程组的 ϕ h , h \phi_{h,h} ϕh,h即为 ϕ h h \phi_{hh} ϕhh


3. 小结

AR( p p p)MA(q)ARMA(p,q)
ACF拖尾在lag=q之后截尾拖尾
PACF在lag=p之后截尾拖尾拖尾
SARMAAR( P P P) s _s sMA(Q) s _s sARMA(P,Q) s _s s
ACF在lag=ks 处拖尾 (k=1,2,…)在lag=Qs处截尾在lag=ks处拖尾
PACF在lag=Ps处截尾在lag=ks处拖尾(k=1,2,…)在lag=ks处拖尾

在非季节性滞后点(h ≠ \neq =ks)处,值为0



三. R 代码

## E.g. AR(2) phi1=0.2,phi2=0.8
#生成100个模拟数
ar2 = arima.sim(list(order=c(2,0,0), ar=c(-.2,-.8)), n = 100)
#计算该模型的acf
ACF_AR2 = ARMAacf(ar=c(-.2,-.8), ma=0, 50)
#画出acf图
plot(ACF_AR2, type="h", xlab="lag")
abline(h=0)
title("AR(2)")
#计算该模型的pacf
PACF_AR2 = ARMAacf(ar=c(-.2,-.8), ma=0, 10,pacf=TRUE)
#画出pacf图
plot(PACF_AR2, type="h", xlab="lag")
title("AR(2)")
abline(h=0)
#使用 R包中的时间序列数据
library(astsa)
plot.ts(globtemp)  #画出时间序列,观察趋势
acf(globtemp) #画出acf
pacf(globtemp) #画出pacf
#进行一阶差分
globtemp_d <- diff(globtemp)
plot.ts(globtemp_d)
#画acf和pacf
par(mfrow = c(2,1))
acf(globtemp_d)
pacf(globtemp_d)
#拟合ARIMA(0,1,2)
sarima(globtemp, 0, 1, 2)
#预测之后10个序列值
sarima.for(globtemp, 10, 0, 1, 2) #输出预测值,SE和预测图

#若为季节性时间序列模型
#使用 UnempRate 数据(月度数据),选择模型为(3,1,2)×(0,1,1),s=12
sarima(UnempRate,3,1,2,0,1,1,12) #拟合模型
sarima.for(UnempRate,12, 3,1,2,0,1,1,12)  #预测下一年(12个月)


参考书目

Time Series Analysis and Its Applications with R examples
Time Series Analysis With Applications in R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值