科普 | 自动驾驶预期功能安全(四)

预期功能安全(SOTIF)在自动驾驶领域的研究日益重要,尤其在从L2到L3的过渡阶段。由于环境影响带来的非预期安全问题,智能网联汽车的安全验证变得复杂。场景库在测试和验证自动驾驶安全性上扮演关键角色,但传统的路测方法成本高昂且效率低。据兰德公司研究,要达到人类驾驶员水平,需要收集海量的驾驶数据。《智能网联汽车预期功能安全前沿技术研究报告》对此进行了深入探讨。
摘要由CSDN通过智能技术生成

预期功能安全(SOTIF)是在自动驾驶技术发展的大背景下出现的,是自动驾驶从L2到L3跨越的必然需求。随着自动驾驶技术的发展,人们发现车辆安全问题并非都源于系统错误和失效。在复杂的系统以及场景中,问题时常源于环境影响带来的非预期性安全问题。国内外科研机构和汽车厂商都在加速对汽车关键系统预期功能安全问题的研究。

智能网联汽车在实际商业化运行之前,需要对其安全性能进行充分验证。随着自动驾驶的“场景化”趋势愈发明显,场景库对于测试、验证自动驾驶汽车的安全性至关重要。采用路测来优化自动驾驶算法耗费的时间与成本太高。根据美国兰德公司的研究,自动驾驶算法想要达到人类驾驶员水平至少需要累计177 亿公里的驾驶数据来完善算法。

特别致谢:智能网联汽车预期功能安全工作组《智能网联汽车预期功能安全前沿技术研究报告》撰写团队!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值