庐陵小子
码龄8年
关注
提问 私信
  • 博客:115,813
    115,813
    总访问量
  • 23
    原创
  • 479,636
    排名
  • 182
    粉丝
  • 1
    铁粉

个人简介:4年车联网,3年ADAS测试和仿真,转型能力提升中;

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-08-29
博客简介:

zqshust的博客

查看详细资料
个人成就
  • 获得116次点赞
  • 内容获得20次评论
  • 获得1,262次收藏
  • 代码片获得685次分享
创作历程
  • 24篇
    2021年
成就勋章
TA的专栏
  • 笔记
  • Sensor Fusion
    1篇
  • 预期功能安全
    3篇
  • Lidar
    7篇
  • Camera
    8篇
  • Radar
    4篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SOTIF - 汽车感知系统验证和确认

预期功能安全系列文章文章目录预期功能安全系列文章汽车感知系统验证和确认汽车感知系统验证和确认本文源自于ISO/PAS 21448-2019 Road Vehicles - Safety of the intended functionality预期功能安全标准,附录D部分,Automotive perception systems verification and validation.汽车感知系统验证和确认是非常困难的,本附录描述感知系统验证和确认的示范。假设:测试行驶无法覆盖每一个可行驶道路;
原创
发布博客 2021.07.05 ·
757 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

SOTIF预期功能安全工作流程

预期功能安全系列文章SOTIF预期功能安全理解及分析方法SOTIF预期功能安全工作流程文章目录预期功能安全系列文章SOTIF预期功能安全工作流程SOTIF预期功能安全工作流程
原创
发布博客 2021.06.20 ·
920 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

SOTIF预期功能安全分析方法

SOTIF预期功能安全介绍文章目录SOTIF预期功能安全介绍前言前言在汽车四化(电动化、网联化、智能化、共享化)领域,尤其是自动驾驶领域,我们发现不是所有的安全问题都来源于E&E系统故障(ISO26262功能安全定义范畴),还需要考虑外界环境(如超出ODD范围,恶劣天气等的影响),系统性能局限,驾驶员误用等因素的影响,比如以下2016年特斯拉的致死事故。这类非故障条件下系统功能不及预期而导致的风险就是SOTIF(ISO/PAS 21448 Safety of the intended
原创
发布博客 2021.06.20 ·
7709 阅读 ·
10 点赞 ·
1 评论 ·
102 收藏

卡尔曼滤波器基础

Sensor Fusion系列文章传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里首先介绍传感器融合相关的知识,包括卡尔曼滤波器基础,扩展卡尔曼滤波器,无损卡尔曼滤波器等。系列文章目录1. 卡尔曼滤波器基础文章目录Sensor Fusion系列文章高斯概率分布介绍预测(Prediction)&更新(Update)卡尔曼滤波器设计高斯概率分布介绍卡尔曼滤波器是一种基于高斯概率分布的系统状态估计技术。高斯分布(Gaussian Distribution)的概率密
原创
发布博客 2021.07.01 ·
394 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Sensor Fusion Using Synthetic Radar and Vision Data.mlx

发布资源 2021.05.22 ·
mlx

MATLAB案例学习-基于雷达和摄像头的传感器融合

文章目录前言生成场景定义雷达和摄像头传感器生成跟踪器仿真场景总结帮助函数前言本文主要参考MATLAB自动驾驶工具箱的案例《Sensor Fusion Using Synthetic Radar and Vision Data》进行学习,基于雷达和传感器数据实现传感器融合。本示例首先展示了如何生成场景,仿真传感器检测,使用传感器融合算法跟踪仿真车辆。使用场景生成和仿真而不是传感器录制数据的优点是可以生成稀少的和潜在危险事件,以用于测试车辆的算法。本示例覆盖生成同步数据的所有流程,使用MATLAB的Dr
翻译
发布博客 2021.05.22 ·
3939 阅读 ·
7 点赞 ·
0 评论 ·
79 收藏

radar-target-generation-and-detection.rar

发布资源 2021.05.22 ·
rar

SFND_Lidar_Obstacle_Detection.zip

发布资源 2021.05.16 ·
zip

基于PCL实现欧式聚类提取

Lidar系列文章传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里首先介绍激光雷达的相关内容,包括激光雷达基本介绍(本节内容),激光点云数据处理方法(点云数据显示,点云分割,点云聚类,障碍物识别实例)等。系列文章目录1. 激光雷达基本介绍2. 激光点云数据显示3. 基于RANSAC的激光点云分割4. 点云分割入门级实例学习5. 激光点云目标物聚类文章目录Lidar系列文章基于PCL实现欧式聚类提取基于PCL实现欧式聚类提取本节我们将介绍如何用PCL Euclid
原创
发布博客 2021.05.16 ·
1200 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

Clustering.zip

发布资源 2021.05.16 ·
zip

点云分割入门级实例

Lidar系列文章传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里首先介绍激光雷达的相关内容,包括激光雷达基本介绍(本节内容),激光点云数据处理方法(点云数据显示,点云分割,点云聚类,障碍物识别实例)等。系列文章目录1. 激光雷达基本介绍2. 激光点云数据显示3. 基于RANSAC的激光点云分割文章目录Lidar系列文章基于PCL实现平面模型分割基于PCL实现圆柱体模型分割基于PCL实现平面模型分割本小节主要介绍如何对一组点云数据做一个简单的平面分割。#inclu
原创
发布博客 2021.05.16 ·
1420 阅读 ·
3 点赞 ·
0 评论 ·
14 收藏

pointCloud_Segmentation.zip

发布资源 2021.05.15 ·
zip

RANSAC激光点云分割

发布资源 2021.05.15 ·
zip

PCD_Visiualization.zip

发布资源 2021.05.15 ·
zip

激光雷达障碍物识别

PCD数据处理提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录PCD数据处理前言PCD数据读取二、使用步骤1.引入库2.读入数据总结前言在前一章节,我们已经了解如何分割和聚类简单的仿真产生的点云。这里我们将介绍如何使用分割和聚类算法处理自动驾驶车辆的真实点云数据。同时我们将介绍点云滤波处理,已经处理pcd文件流实现障碍物检测的方法。PCD数据
原创
发布博客 2021.05.16 ·
3340 阅读 ·
5 点赞 ·
1 评论 ·
74 收藏

激光点云目标物聚类

系列文章目录文章目录系列文章目录前言欧氏聚类KD-TreeKD-Tree中搜索点使用PCL进行欧氏聚类前言目前我已经实现点云分割,分离出障碍物点云。如果可以将这些障碍物进行区分,分离出同一物体反射的点云,则将会对我们的多目标跟踪(车辆,行人,自行车等)非常有帮助。欧氏聚类聚类:分离出属于同一障碍物的激光点云,比如车辆,行人等;欧氏聚类:Euclidean clustering,根据点之间的距离进行分组关联;KD-Tree:通过将搜索空间分块并将点云分类进不同的区域,减小了不相邻点云间的距离计算
原创
发布博客 2021.05.16 ·
2221 阅读 ·
8 点赞 ·
0 评论 ·
37 收藏

基于RANSAC的激光点云分割

系列文章目录文章目录系列文章目录RANSAC随机抽样一致简介实例-使用RANSAC拟合直线实例-使用RANSAC拟合平面使用PCL点云库分割平面RANSAC随机抽样一致简介RANSAC(RANdom SAmple Consensus)随机抽样一致定义:从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。每次迭代时选取一个数据子集(线:2个数据点,面:三个数据点)并对其进行拟合,计算剩余点到拟合后的模型(线/面)的距离,包含最多数量的“局内点”(距离模型一定范围内的点)或最小的噪声作为
原创
发布博客 2021.05.15 ·
2657 阅读 ·
6 点赞 ·
2 评论 ·
39 收藏

激光雷达基本介绍

激光雷达系列文章目录传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里主要介绍激光点云数据处理以获取障碍物位置信息。提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录激光雷达系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,
原创
发布博客 2021.05.11 ·
4268 阅读 ·
2 点赞 ·
0 评论 ·
37 收藏

基于Bounding Box的激光点云聚类

系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言基于ROI实现激光点云聚类二、使用步骤1.引入库2.读入数据总结前言本节我们将通过从2D图像检测获取到的ROI(Region of interests)来对激光点云进行聚类,避免错误聚类。基于此初步的3D点云聚类,我们可以提取最近点的一些信息,比如距离,激光点云数量,目
原创
发布博客 2021.05.30 ·
1896 阅读 ·
1 点赞 ·
1 评论 ·
28 收藏

YOLOv3物体检测

系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言YOLO简介YOLOv3 WorkflowYOLO的算法流程YOLO3算法处理流程及其代码前言截止目前我们已经实现2D图像特征跟踪,3D激光点云测距和激光点云投影至图像上。为稳定的获取TTC估计,我们还需要聚类投影的同一车辆上的激光点云,去除非关联点云(如地面反射点云)
原创
发布博客 2021.05.30 ·
1830 阅读 ·
5 点赞 ·
0 评论 ·
13 收藏
加载更多