💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理 (进阶版)
②付费专栏Matlab信号处理(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、 动态三角定位法移动用户位置定位
1 动态三角定位法
动态三角定位法是一种用于建筑内移动用户位置定位的技术。它利用已经部署好的传感器节点来测量目标节点与这些节点之间的距离,通过三角定位法计算出目标节点的位置。与其他定位技术相比,动态三角定位法具有不需要额外设备或基础设施的优势,并且可以根据需要调整节点的数量和位置,以提高定位的精确度。在建筑内部,我们可以将这些节点部署在不同的位置,例如墙壁上或天花板上,以覆盖整个区域。通过使用更多的节点,我们可以提高定位的精确度。
2 动态三角定位法步骤
动态三角定位法是一种用于建筑内移动用户位置定位的方法,其步骤如下:
(1)至少需要三个节点来进行测量,这些节点可以部署在建筑物内的不同位置,例如墙壁或天花板上,以覆盖整个区域。
(2)通过测量目标节点与这三个节点之间的距离,可以利用三角定位法计算出目标节点的位置。
(3)通过使用更多的节点,可以提高定位的精确度。
(4)由于节点部署的灵活性,我们可以根据需要调整节点的数量和位置,以提高定位的精确度。
注意:动态三角定位法不需要依赖额外的设备或基础设施,只需要利用已经部署好的传感器节点即可实现。
3 动态三角定位法移动用户位置定位
动态三角定位法是一种用于建筑内移动用户位置定位的技术。它利用已经部署好的传感器节点,通过测量移动用户与三个或以上的节点之间的距离,来计算移动用户的位置坐标。与其他定位技术相比,动态三角定位法具有一定的优势。它不需要依赖额外的设备或基础设施,只需要利用已经部署好的传感器节点即可实现。同时,由于节点部署的灵活性,我们可以根据需要调整节点的数量和位置,以提高定位的精确度。在实现动态三角定位法时,通常需要结合其他算法,如灰色预测算法,以提高定位的精确度。
⛄二、部分源代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GREY PREDICTION ALGORITHM %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
clc
clear all
clf
d0=rand;
n=4;
s=300;
w1=0.5;w2=0.5
mrss=-10nlog10(d0);
a=0.5;b=6;
d=a+(b-a)rand(1,s);
d=sort(d);
for i=1:s
RSS_0(i)=mrss-10nlog10(d(i)/d0)-20;
end
for i=1:s
rss_0(i)=10^(-RSS_0(i)/10);
end
sum=0;
for i=1:s
sum=sum+rss_0(i);
rss_1(i)=sum;
end
for i=1:s-1
B(i,1)=-1/2.(rss_1(i)+rss_1(i+1));
end
B(:,2)=1;
yn=(rss_0(2:s))';
v=inv(B’B)B’yn;
a=v(1);
b=v(2);
for i=1:s
prss_1(i)=rss_1(i);
prss_1(i+1)=(rss_0(i)-b/a)exp(-as)+(b/a);
prss_0(i)=rss_0(i);
prss_0(i+1)=prss_1(i+1)-prss_1(i);
end
PRSS_0(1:s)=-10log10(prss_0(2:s+1));
for i=1:s
prss_2(i)=w1rss_0(i)+w2prss_0(i+1);
end
PRSS_2=-10*log10(prss_2);
%results and plots
fprintf(‘observed and predicted values of the RSSIs in dB are %g\n’)
disp([RSS_0’ PRSS_0’ PRSS_2’])
rs_0(1:s)=awgn(RSS_0(1:s),d0-10);
prs_0(1:s)=awgn(PRSS_0(1:s),d0-10);
prs_2=awgn(PRSS_2,d0-10);
plot(d(1:s),rs_0(1:s),d(1:s),prs_0(1:s))
xlabel(’ 루m ‘)
ylabel(’ ź ǿ ȣ dB ‘)
legend(‘ԭʼ RSSI’,‘Ԥ RSSI’)
grid on
figure
plot(d(1:s),rs_0(1:s),d(1:s),prs_2(1:s))
xlabel(’ 루m ‘)
ylabel(’ ź ǿ ȣ dB ')
legend(‘ԭʼ RSSI’,‘Weight Predicted RSSI’)
grid on
toc
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]李玲纯,高来鑫.改进磷虾群算法在变电站选址中的应用[J].重庆工商大学学报(自然科学版). 2018,35(03)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合