目录
sklearn.linear_model.LinearRegression
简单的数组属性
# 这个求numpy的版本
numpy.__version__
# 这个是求变量的类型
a = 5
type(a)
# list()命令创建一个整数的列表,range(x)函数将会拼出0到x-1之间的元素
int_list = list(range(10)) #输出[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 迭代上述list,将其int型改变成为string型的list
str_list = [str(i) for i in int_list] #输出['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# 将int_list的值进行复制x次
double_list = int_list * 2 #输出[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 将list转化为数组的操作
int_arr = np.array(int_list) #输出array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# numpy的数组还有几个常用的属性
int_arr.ndim #维度的数量,输出1,代表一维数组
int_arr.shape #每个维度的大小,输出(10,),代表每个维度有10个元素,因为只有一维,所以是(10,)
int_arr.size #数组的元素个数,输出10,总的元素总数
int_arr.dtype #数组的数据类型,输出int64
# numpy的数组的索引(头索引,尾索引)、如果没填值,默认是(x[start=0:stop=维度: step=1])
int_arr[0] #输出0
int_arr[3] #输出3
int_arr[-1] #输出9
int_arr[-2] #输出8
int_arr[2:5] #输出array([2, 3, 4])
int_arr[:5] #输出array([0, 1, 2, 3, 4])
int_arr[5:] #输出array([5, 6, 7, 8, 9])
int_arr[::1] #输出[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
int_arr[::2] #隔x位输出,所以输出array([0, 2, 4, 6, 8])
int_arr[::-1] #返回数组的所有元素,但顺序相反,输出array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
int_arr[::-3] #隔x位逆[9, 6, 3, 0]输出,所以输出array([0, 2, 4, 6, 8])
# 创建一个N维M列数组
arr_2d = np.zeros((3, 5))
# 2维数组,输出array([[ 0., 0., 0., 0., 0.],[ 0., 0., 0., 0., 0.],[ 0., 0., 0., 0., 0.]])
arr_float_3d = np.ones((3, 2, 4))
#输出array([[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]],
[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]],
[[ 1., 1.,