机器学习——数组的操作、查看数据集、Matplotlib绘图

本文介绍了Python数据分析中常用的numpy库,包括数组属性、数据查看、随机数生成以及matplotlib绘图。详细讲解了numpy.random.randint、numpy.linspace、numpy.ones、numpy.sum等函数的用法,并展示了如何使用sklearn线性回归模型及评估指标。同时,探讨了数组的shape属性及其在数据集查看中的应用。
摘要由CSDN通过智能技术生成

目录

简单的数组属性

基础的查看数据集

使用Matplotlib绘图:

sklearn模型评估常用指标函数

numpy.random.randint

numpy.linspace

numpy.ones

numpy.sum

numpy.random.randn

numpy.random.rand

shape()

sklearn.linear_model.LinearRegression



简单的数组属性

# 这个求numpy的版本
numpy.__version__

# 这个是求变量的类型
a = 5
type(a)

# list()命令创建一个整数的列表,range(x)函数将会拼出0到x-1之间的元素
int_list = list(range(10))  #输出[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# 迭代上述list,将其int型改变成为string型的list
str_list = [str(i) for i in int_list]  #输出['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

# 将int_list的值进行复制x次
double_list = int_list * 2  #输出[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# 将list转化为数组的操作
int_arr = np.array(int_list)  #输出array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

# numpy的数组还有几个常用的属性
int_arr.ndim  #维度的数量,输出1,代表一维数组
int_arr.shape  #每个维度的大小,输出(10,),代表每个维度有10个元素,因为只有一维,所以是(10,)
int_arr.size  #数组的元素个数,输出10,总的元素总数
int_arr.dtype  #数组的数据类型,输出int64

# numpy的数组的索引(头索引,尾索引)、如果没填值,默认是(x[start=0:stop=维度: step=1])
int_arr[0]  #输出0
int_arr[3]  #输出3
int_arr[-1]  #输出9
int_arr[-2]  #输出8
int_arr[2:5]  #输出array([2, 3, 4])
int_arr[:5]  #输出array([0, 1, 2, 3, 4])
int_arr[5:]  #输出array([5, 6, 7, 8, 9])
int_arr[::1]  #输出[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
int_arr[::2]  #隔x位输出,所以输出array([0, 2, 4, 6, 8])
int_arr[::-1]  #返回数组的所有元素,但顺序相反,输出array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
int_arr[::-3]  #隔x位逆[9, 6, 3, 0]输出,所以输出array([0, 2, 4, 6, 8])

# 创建一个N维M列数组
arr_2d = np.zeros((3, 5))  
# 2维数组,输出array([[ 0.,  0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.,  0.]])

arr_float_3d = np.ones((3, 2, 4))
#输出array([[[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]],

       [[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]],

       [[ 1.,  1.,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值