sklearn DecisionTree 源码分析

本文主要探讨了scikit-learn中DecisionTree算法的实现细节,包括最大叶子节点数max_leaf_nodes的设置,如何防止过拟合,以及算法在处理数据时的内部结构。虽然scikit-learn的CART算法优化版不支持类别变量,但其对于数值特征的处理具有灵活性。
摘要由CSDN通过智能技术生成

sklearn.tree._classes.BaseDecisionTree#fit
y至少为1维(意思是可以处理multilabels数据)

y = np.atleast_1d(y)
if is_classifier(self):
    self.tree_ = Tree(self.n_features_,
                      self.n_classes_, self.n_outputs_)
else:
    self.tree_ = Tree(self.n_features_,
                      # TODO: tree should't need this in this case
                      np.array([1] * self.n_outputs_, dtype=np.intp),
                      self.n_outputs_)
self.n_outputs_ = y.shape[1]
self.n_classes_ = self.n_classes_[0]
self.n_classes_ = []
for k in range
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值