Learning2Rank 学习

Learning2Rank是排序学习的重要方法,包括PointWise、Pairwise和ListWise策略。Pairwise方法关注文档对的相对顺序,但忽视了位置的重要性;ListWise则直接优化整体序列,如MAP和NDCG。BPR(贝叶斯个性化排序)通过用户偏好构建目标函数,适用于隐式反馈数据。LambdaRank则针对非平滑成本函数,改进排序效果。
摘要由CSDN通过智能技术生成

总览

Learning to Rank: pointwise 、 pairwise 、 listwise

  • PointWise:有时候排序的先后顺序是很重要的,而PointWise方法学习到全局的相关性,并不对先后顺序的优劣做惩罚
  • PairWise:文档对方法将排序问题转化为多个pair的排序问题,比较不同文章的先后顺序。
    • 文档对方法考虑了两个文档对的相对先后顺序,却没有考虑文档出现在搜索列表中的位置,排在搜索结果前面的文档更为重要,如果靠前的文档出现判断错误,代价明显高于排在后面的文档。
    • 同时不同的査询,其相关文档数量差异很大,所以转换为文档对之后, 有的查询对能有几百个对应的文档对,而有的查询只有十几个对应的文档对,这对机器学习系统的效果评价造成困难
  • ListWise:ListWise方法直接考虑整体序列,针对Ranking评价指标进行优化。比如常用的MAP, NDCG

BPR

贝叶斯个性化排序(BPR)算法小结

用tensorflow学习贝叶斯个性化排序(BPR)

李航 - A Short Introduction to Learning to Rank

Bayesian Personalized Ranking from Implicit Feedback

在这里插入图片描述

用简洁的语言讲清楚BPR:

  • 每个用户之间的偏好行为相互独立
    • 用户 u u u在商品 i i i j j j之间的偏好和其他用户无关。
  • 同一用户对不同物品的偏序相互独立,也就是用户 u u
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值