总览
Learning to Rank: pointwise 、 pairwise 、 listwise
PointWise
:有时候排序的先后顺序是很重要的,而PointWise方法学习到全局的相关性,并不对先后顺序的优劣做惩罚。PairWise
:文档对方法将排序问题转化为多个pair的排序问题,比较不同文章的先后顺序。- 文档对方法考虑了两个文档对的相对先后顺序,却没有考虑文档出现在搜索列表中的位置,排在搜索结果前面的文档更为重要,如果靠前的文档出现判断错误,代价明显高于排在后面的文档。
- 同时不同的査询,其相关文档数量差异很大,所以转换为文档对之后, 有的查询对能有几百个对应的文档对,而有的查询只有十几个对应的文档对,这对机器学习系统的效果评价造成困难
ListWise
:ListWise方法直接考虑整体序列,针对Ranking评价指标进行优化。比如常用的MAP, NDCG。
BPR
李航 - A Short Introduction to Learning to Rank
Bayesian Personalized Ranking from Implicit Feedback
用简洁的语言讲清楚BPR:
- 每个用户之间的偏好行为相互独立
- 用户 u u u在商品 i i i和 j j j之间的偏好和其他用户无关。
- 同一用户对不同物品的偏序相互独立,也就是用户 u u