BZOJ 1297 矩阵乘法

    这道题的意思是给出一张有向带权图,求出两点间路径长度为T的路径条数。首先我们先考虑权值全部为1的情况,当权值全部为1时,答案即为该图邻接矩阵的T次幂,证明大概与Floyad的证明类似,利用乘法原理,因为i和j连通,f[i][j]就等于1,而做一次矩阵乘法就意味着走了1步的方案数,而等于f[i][j]=0的情况,在矩阵乘法中对答案没有影响。而这道题边的权值比较小,因此我们可以间一条边权不为1的边进行拆点,这样就可以用上述方法处理。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 105
#define mod 2009
int f[maxn][maxn],g[maxn][maxn],ans[maxn][maxn],h[maxn][maxn];
int t,n;
char s[15][15];

void qpower(int n)
{
	for (int i=1;i<=n;i++) ans[i][i]=1;
	for (;t>0;t>>=1)
	{
		if (t&1)
		{
			memset(g,0,sizeof g);
			for (int i=1;i<=n;i++)
				for (int j=1;j<=n;j++)
					for (int k=1;k<=n;k++) 
						g[i][j]=(g[i][j]+(ans[i][k]*f[k][j])%mod)%mod;	
			memcpy(ans,g,sizeof g);
		}
		memset(h,0,sizeof h);
		for (int i=1;i<=n;i++)
			for (int j=1;j<=n;j++)
				for (int k=1;k<=n;k++)
					h[i][j]=(h[i][j]+(f[i][k]*f[k][j])%mod)%mod;
		memcpy(f,h,sizeof h);
	}
}

int main()
{
	scanf("%d%d",&n,&t);
	for (int i=1;i<=8;i++) 
		for (int j=1;j<=n;j++)  f[j+n*i][j+n*(i-1)]=1;
	for (int i=1;i<=n;i++)	scanf("%s",s[i]);
	for (int i=1;i<=n;i++)
		for (int j=0;j<n;j++) 
		{
			if (s[i][j]=='0') continue;
			int k=s[i][j]-'0';
			f[i][j+1+(k-1)*n]=1;
		}
	int N=9*n;
	qpower(N);
	printf("%d\n",ans[1][n]);
	return 0;	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值