这道题的意思是给出一张有向带权图,求出两点间路径长度为T的路径条数。首先我们先考虑权值全部为1的情况,当权值全部为1时,答案即为该图邻接矩阵的T次幂,证明大概与Floyad的证明类似,利用乘法原理,因为i和j连通,f[i][j]就等于1,而做一次矩阵乘法就意味着走了1步的方案数,而等于f[i][j]=0的情况,在矩阵乘法中对答案没有影响。而这道题边的权值比较小,因此我们可以间一条边权不为1的边进行拆点,这样就可以用上述方法处理。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 105
#define mod 2009
int f[maxn][maxn],g[maxn][maxn],ans[maxn][maxn],h[maxn][maxn];
int t,n;
char s[15][15];
void qpower(int n)
{
for (int i=1;i<=n;i++) ans[i][i]=1;
for (;t>0;t>>=1)
{
if (t&1)
{
memset(g,0,sizeof g);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
for (int k=1;k<=n;k++)
g[i][j]=(g[i][j]+(ans[i][k]*f[k][j])%mod)%mod;
memcpy(ans,g,sizeof g);
}
memset(h,0,sizeof h);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
for (int k=1;k<=n;k++)
h[i][j]=(h[i][j]+(f[i][k]*f[k][j])%mod)%mod;
memcpy(f,h,sizeof h);
}
}
int main()
{
scanf("%d%d",&n,&t);
for (int i=1;i<=8;i++)
for (int j=1;j<=n;j++) f[j+n*i][j+n*(i-1)]=1;
for (int i=1;i<=n;i++) scanf("%s",s[i]);
for (int i=1;i<=n;i++)
for (int j=0;j<n;j++)
{
if (s[i][j]=='0') continue;
int k=s[i][j]-'0';
f[i][j+1+(k-1)*n]=1;
}
int N=9*n;
qpower(N);
printf("%d\n",ans[1][n]);
return 0;
}