tf.keras加载图片

图片三要素:图片长度,图片宽度,图片通道数。灰度图是单通道,彩色图是三通道。
一张图片可以表示成一个3D张量,即其形状为[height,width,channel]
多张图片:[batch,height,width,channel],batch表示一个批次的张量数.

keras与tf.keras相关API设置一样,
    preprocessing模块:keras数据预处理工具
    utils:keras实用程序    

Image模块读取图片

使用该模块要先下载Pillow库

从tensorflow.keras.preprocessing.image或者tensorflow.python.keras.preprocessing.image直接导入,操作如下:

from tensorflow.keras.preprocessing.image import load_img

img = load_img(path = filepath, target_size = (height,width))

#加载图片,若要显示图片建议用plt, 

from tensorflow.python.keras.preprocessing.image import load_img
import matplotlib.pyplot as plt
img = load_img('americanus_2.jpg') #target_size = (height,width)
plt.imshow(img, 'gray')
plt.axis('off')
plt.show()
img.size #(width, height)

 

(776, 183) 

 

### 解决 `tf.keras` 相关报错问题 当遇到 `tf.keras` 的报错时,可以从以下几个方面着手解决问题: 对于优化器相关的报错,如果使用的是 TensorFlow 版本高于 2.5,则应确保导入语句以及模型编译部分按照新版本的要求编写。例如,在旧版 Keras 中使用的优化器方式可能不再适用,应当更改为新的形式[^2]。 ```python import tensorflow as tf model.compile( loss='mean_squared_error', optimizer=tf.keras.optimizers.SGD(learning_rate=0.05), metrics=['accuracy'] ) ``` 针对某些特定情况下由于模块路径不同而引发的错误,可以尝试调整导入库的方式。比如将原本从 `tensorflow.keras` 导入的内容改为从 `tensorflow.python.keras` 进行导入来规避潜在的问题[^3]。 另外,处理文件路径相关的问题也非常重要。特别是涉及到本地文件读取的时候,应该仔细检查所提供的 URL 或者文件地址是否正确无误。如下面的例子所示,通过修正文件路径前缀解决了加载训练样本失败的情况[^4]。 ```python training_samples_file_path = tf.keras.utils.get_file( "trainingSamples.csv", "file:///H:/Desktop/SparrowRecSys-master/SparrowRecSys-master/src/main/resources/webroot/sampledata/trainingSamples.csv" ) ``` 最后,面对其他类型的 `tf.saved_model.save` 错误,建议先确认所保存的对象是否符合规定格式,并且注意环境配置的一致性和依赖项之间的兼容性等问题[^1]。 #### 注意事项总结: - 更新至最新稳定版本并遵循官方文档指导; - 修改代码逻辑以适应 API 变化; - 调整包名或函数调用来匹配当前框架结构; - 正确设置资源位置参数;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值