[笔记][总结] MIT线性代数 Gilbert Strang 对称矩阵

作者水平有限,欢迎大家提出文中错误

对称矩阵

对称矩阵 A = A T A=A^T A=AT其特征值都是实数,且其特征向量是相互正交的(严格来说是可以找到一组相互垂直的特征向量)
A x = λ x Ax=\lambda x Ax=λx
取共轭(其中 A = A ˉ A=\bar A A=Aˉ)
A x ˉ = λ ˉ x ˉ A \bar x= \bar \lambda \bar x Axˉ=λˉxˉ
取转置(其中 A T = A A^T=A AT=A)
x ˉ T A = λ ˉ x ˉ T \bar x^T A=\bar \lambda \bar x^T xˉTA=λˉxˉT
两边同乘 x x x
x ˉ T A x = x ˉ T λ ˉ x = x ˉ T λ x \bar x^T Ax= \bar x^T\bar \lambda x=\bar x^T\lambda x xˉTAx=xˉTλˉx=xˉTλx
x ˉ T x = l e n g t h 2 ( x ˉ ) > 0 \bar x ^T x=length^2(\bar x)>0 xˉTx=length2(xˉ)>0,所以
λ = λ ˉ ( λ   i s   r e a l ! ) \lambda=\bar \lambda(\lambda\ is\ real!) λ=λˉ(λ is real!)
同理,反对称矩阵 A = − A T A=-A^T A=AT,其特征值都是纯虚数

对称矩阵的对角化

对于一般矩阵 A A A A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS1
对于对称矩阵存在标准正交的特征向量矩阵 Q Q Q,而对于标准正交矩阵 Q Q Q,有 Q − 1 = Q T Q^{-1}=Q^T Q1=QT,所以如果 A = A T A=A^T A=AT
A = Q Λ Q T A=Q\Lambda Q^T A=QΛQT
对称矩阵的特征值特征向量,以及其对称性在上式均有体现。
进一步分解
A = λ 1 q 1 q 1 T + λ 2 q 2 q 2 T + ⋯ + λ n q n q n T A=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+\dots+\lambda_nq_nq_n^T A=λ1q1q1T+λ2q2q2T++λnqnqnT
注意到, q i q i T q_iq_i^T qiqiT是一个投影矩阵,所以每个对称矩阵都是相互正交的投影矩阵的线性组合。

正定性

对于对称矩阵
#   p o s i t i v e   p i v o t s = #   p o s i t i v e   e i g e n v a l u e s \# \ positive\ pivots=\# \ positive\ eigenvalues # positive pivots=# positive eigenvalues
#   n e g a t i v e   p i v o t s = #   n e g a t i v e   e i g e n v a l u e s \# \ negative\ pivots=\# \ negative\ eigenvalues # negative pivots=# negative eigenvalues
所有特征值都是正值的对称矩阵被称为是正定的
所有特征值都是负值的对称矩阵被称为是负定的
一些特征值是正值且一些为0的矩阵被称为是半正定的
一些特征值是负值且一些为0的矩阵被称为是半负定的

正定矩阵判据

  1. 所有特征值都是正值对称矩阵
  2. 所有子行列式都是正值对称矩阵
  3. 所有主元都是正值对称矩阵
  4. x T A x > 0 , x ≠ 0 x^TAx>0,x\not= 0 xTAx>0,x=0

正定矩阵的性质

如果 A , B A,B A,B是正定矩阵,那么
6. A B AB AB是正定矩阵
7. A + B A+B A+B是正定矩阵

正定性与最小二乘法

对任意列满秩矩阵 A m ∗ n A_{m*n} Amn A T A A^TA ATA是正定的
证明
首先 A T A A^TA ATA是对称矩阵。
x T A T A x = ( A x ) T ( A x ) = ∥ A x ∥ > 0 , i f   x ≠ 0 x^TA^TAx=(Ax)^T(Ax)=\left\|Ax\right\|>0,if\ x\not=0 xTATAx=(Ax)T(Ax)=Ax>0,if x=0
注意,只有 A A A列满秩的时候,即 N ( A ) = { 0 } N(A)=\{0\} N(A)={0}的时候, A T A A^TA ATA才是正定的。

二次型

由于同正定性的不同矩阵只是图形的偏心率和姿态有所不同,所以这里先只讨论标准情况,对于对称矩阵 A 2 ∗ 2 A_{2*2} A22,将绘制二次型图像 z = x T A x z=x^TAx z=xTAx
A = [ 1 0 0 1 ] , ( A   i s   p o s i t i v e   d e f i n i t e ) A= \left[ \begin{matrix} 1 & 0\\ 0 & 1\\ \end{matrix} \right],(A\ is \ positive\ definite) A=[1001],(A is positive definite)
在这里插入图片描述
A = [ 1 0 0 0 ] , ( A   i s   p o s i t i v e   s e m i − d e f i n i t e ) A= \left[ \begin{matrix} 1 & 0\\ 0 & 0\\ \end{matrix} \right],(A\ is \ positive\ semi-definite) A=[1000],(A is positive semidefinite)
在这里插入图片描述
A = [ − 1 0 0 0 ] , ( A   i s   n e g a t i v e   s e m i − d e f i n i t e ) A= \left[ \begin{matrix} -1 & 0\\ 0 & 0\\ \end{matrix} \right],(A\ is \ negative\ semi-definite) A=[1000],(A is negative semidefinite)
在这里插入图片描述
A = [ − 1 0 0 − 1 ] , ( A   i s   n e g a t i v e   d e f i n i t e ) A= \left[ \begin{matrix} -1 & 0\\ 0 & -1\\ \end{matrix} \right],(A\ is \ negative\ definite) A=[1001],(A is negative definite)
在这里插入图片描述
A = [ 1 0 0 − 1 ] , ( A   i s   n e i t h e r   p o s i t i v e   d e f i n i t e   n o r   n e g a t i v e   d e f i n i t e ) A= \left[ \begin{matrix} 1 & 0\\ 0 & -1\\ \end{matrix} \right],(A\ is\ neither\ positive\ definite\ nor\ negative\ definite) A=[1001],(A is neither positive definite nor negative definite)
在这里插入图片描述
以上这些图形都有最佳的观测方向,这种最佳观测方向都是沿着特征向量方向,以负定情况举例
沿 [ 1 0 ] 方 向 沿 \left[ \begin{matrix} 1\\ 0\\ \end{matrix} \right]方向 沿[10]
在这里插入图片描述
沿 [ 0 1 ] 方 向 沿 \left[ \begin{matrix} 0\\ 1\\ \end{matrix} \right]方向 沿[01]
在这里插入图片描述
而根据特征向量几何意义,矩阵 Q Q Q指示了这些轴的方向,而 Λ \Lambda Λ则对图形在特征向量的方向进行拉伸
如果
Q = [ c o s θ − s i n θ s i n θ c o s θ ] Q= \left[ \begin{matrix} cos\theta & -sin\theta\\ sin\theta & cos\theta\\ \end{matrix} \right] Q=[cosθsinθsinθcosθ]
则图形被旋转 θ \theta θ
在这里插入图片描述

对称矩阵的LU分解与二次型的配方


A = [ 2 6 6 20 ] A= \left[ \begin{matrix} 2 & 6\\ 6 & 20\\ \end{matrix} \right] A=[26620]
为例
A = [ 1 3 1 ] [ 2 6 2 ] A= \left[ \begin{matrix} 1 & \\ 3 & 1\\ \end{matrix} \right] \left[ \begin{matrix} 2 & 6\\ & 2\\ \end{matrix} \right] A=[131][262]
同时
x T A x = 2 x 1 2 + 12 x 1 x 2 + 20 x 2 2 = 2 ( x + 3 y ) 2 + 2 y 2 x^TAx=2x_1^2+12x_1x_2+20x_2^2=2(x+3y)^2+2y^2 xTAx=2x12+12x1x2+20x22=2(x+3y)2+2y2
二次型被配方为两平方项之和,可以观察到 x + 3 y x+3y x+3y对应了 [ 1   3 ] T [1\ 3]^T [1 3]T y y y对应了 [ 0   1 ] T [0\ 1]^T [0 1]T,而两项前面的因子,分别是两个主元,同时也可以得到,为什么说负主元会导致 x T A x > 0 x^TAx>0 xTAx>0不总成立了

连续多元函数在某点存在极小值的判据

以二元函数 f ( x , y ) f(x,y) f(x,y)为例

  1. f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)=0,f_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0
  2. 二阶导数矩阵在该点是正定的
    [ f x x f x y f y x f y y ] x = x 0 , y = y 0 i s   a   p o s i t i v e   d e f i n i t e   m a t r i x \left[ \begin{matrix} f_{xx} & f_{xy}\\ f_{yx} & f_{yy}\\ \end{matrix} \right]_{x=x_0,y=y_0}is\ a\ positive\ definite\ matrix [fxxfyxfxyfyy]x=x0,y=y0is a positive definite matrix

同理如果二阶导数矩阵是负定的,则会有极大值;如果二阶导数矩阵二次型是鞍面(行列式小于0),则此出不存在极值
此条件很容易推广到n元函数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值