线性代数-Gilbert Strang(第三部分)

本文深入探讨线性代数中的核心概念,包括对称矩阵的特征值性质,证明实对称矩阵的特征值为实数且对应的特征向量正交。接着,讲解正定矩阵的定义及其性质,指出正定矩阵与二次型的关系。同时,介绍了复矩阵与快速傅里叶变换(FFT),阐述傅里叶矩阵的构造和FFT的高效计算原理。通过对矩阵变换和正交基的讨论,展示了线性变换如何通过矩阵表示,并探讨了奇异值分解在处理任意矩阵中的应用。
摘要由CSDN通过智能技术生成

第二十六课时:对称矩阵和正定性

本节研究对称矩阵的特征值和特征向量。

对称矩阵的性质:

  • 实对称矩阵的特征值是实数
  • 在对称矩阵的特征向量中,能挑出一组是垂直正交的
    • 如果特征值互不相同,那么每个特征值的特征向量是在单独的一条线上,那些线是垂直正交的;
    • 如果特征值重复,那就有一整个平面的特征向量,在那个平面上,我们可以选择垂直的向量
    • 将这组特征向量转化为标准正交向量,由它们组成的矩阵称为标准正交矩阵。
  • 如果是复矩阵,不仅要求转置相等,而且要求共轭,即: A=A¯T

通常情况下,矩阵A可表示为 A=SΛS1
当 A 是对称矩阵的时候, A=QΛQ1=QΛQT ,Q表示标准正交矩阵。数学上叫这个为谱定理,谱就是指矩阵的特征值集合。

证明:实对称矩阵的特征值是实数

λ,x 分别为对称矩阵A的特征值和特征向量,满足: Ax=λx . 对式子两边同时取共轭有: A¯x¯=λ¯x¯ . 对第一个式子两边同时左乘 x¯T ,有:

x¯TAx=λx¯Tx

对第二个式子两边转置并右乘 x ,同时利用 实对称( A=A¯,A=AT )性得到:
x¯TAx=λ¯x¯Tx

对比可知: λ=λ¯ ,得证。

证明:实对称阵属于不同特征值的的特征向量是正交的

λ1,λ2 为 A 的两个不同特征值, x1,x2 分别为其对应的特征向量,有:

Ax1=λ1x1Ax2=λ2x2

分别取转置,并分别右乘 x2 x1 得:
xT1ATx2=λ1xT1x2xT2ATx1=λ2xT2x1

因为 xT1ATx2 是一个常数,故它等于它的转置,并且根据 A 是实对称矩阵有 A=AT ,所以
xT1ATx2=(xT1ATx2)T=xT2Ax1=xT2ATx1

因此 λ1xT1x2=λ2xT2x1 ,又 λ1λ2 ,故 x1x2 . 得证。

每一个对称矩阵都是一些相互垂直的投影矩阵的组合

某单位向量(如前面的标准正交向量),乘以自己的转置得到的是什么矩阵:投影矩阵,记得投影矩阵的重要性质: PT=P .

A=QΛQT==[q1q2]λ1q2q1q2λ1q1qT1+λ2q2qT2+

对称矩阵特征值的符号:

  • 实对称矩阵的特征值的符号与主元的符号一致;
  • 正主元的个数等于正特征值的个数
  • 特征值之积等于主元之积,因为特征值之积等于行列式,主元之积为行列式。

正定矩阵

如果一个实对称矩阵特征值都是正数,那么它是正定矩阵。

性质:

  • 主元也都是正数
  • 所有子行列式都是正数

正定矩阵将方阵特征值,主元,行列式融为一体。

第二十五课时:复矩阵和快速傅里叶变换FFT

复向量和复矩阵

定复向量z,每个元素是复数,z 向量是在 Cn 而不是在 Rn 中,即n 维复空间

复向量的模

复向量的模不能向实向量那样求 zTz 。举例: (1i)T(1i)=0 . 但如果求向量与共轭向量的乘积,那就可以, (1i)T(1i)=2 .

复向量求模时,在做转置的时候还需要求共轭复数
zHz 表示,这就是模长的平方。 zH 表示对向量z 的转置并共轭,H 代表埃尔米特 Hermite。复向量的内积: yHx

埃尔米特矩阵(复对称矩阵)

埃尔米特矩阵:对于复矩阵,复对称矩阵需满足的是AH=A,AH 表示的是对角线上元素不变,其余对称的元素转置时变为共轭复数。

实对称矩阵的结论对复对称矩阵同样成立:对称矩阵和埃尔米特矩阵的特征值是实数,特征向量相互垂直。

酉矩阵(复空间的标准正交矩阵)

如果一组复向量 q1,12,,qn 是标准正交基,向量间模为1,那么有:

qHiqj={ 0,ij1,i=j

综合考虑实矩阵和复矩阵可知,正交矩阵需要满足的条件即为: QHQ=I ,在复空间叫做酉矩阵(unitary,n 阶方阵,列
向量正交,单位向量)。

傅里叶矩阵:最著名的酉矩阵

n阶傅里叶矩阵定义如下:

Fn=1n11111ww2wn11w2w4w2(n1)1wn1w2(n1)w(n1)2,(Fn)jk=wjk

元素是 w 的幂,且 wn=1 (n 是矩阵阶数),在复平面内, w 落在单位圆上,故 w=ei2π/n 。(在复数域内指数函数的定义: eix=cosx+isinx )

例如,

  • n=6 时, w=ei2π/6=12+32i,w6=1 ,可以说 1 的 6 次方根是它们, w 是原根;
  • n=4 时, w=ei2π/4=i (刚好是90°), w2=1 w3=i w4=1
  • F4 定义如下:
    F4==1411111ii2i31i2i4i61
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值