[笔记][总结] MIT线性代数 Gilbert Strang 向量空间

作者水平有限,欢迎大家提出文中错误

向量空间

此处直接引用经典的八条定义:

V V V是一个非空集合,其元素 x , y , z x,y,z x,y,z被称为向量; K K K是一个数域,有元素 k , l , m k,l,m k,l,m V V V被称为一个向量空间或线性空间,当:

  1. V V V中定义加法运算,当 x , y ∈ V x,y\in V x,yV,有唯一的和 x + y ∈ V x+y\in V x+yV,且加法满足
    a) 结合律 x + ( y + z ) = ( z + y ) + z x+(y+z)=(z+y)+z x+(y+z)=(z+y)+z
    b) 交换律 x + y = y + x x+y=y+x x+y=y+x
    c) 存在零元 0 0 0,使 x + 0 = x x+0=x x+0=x
    d) 每个元素都存在负元素,即 ∀ x ∈ V , ∃ y ∈ V , x + y = 0 \forall x \in V,\exists y \in V,x+y=0 xV,yV,x+y=0,称y为x的负元素,记作 − x -x x
  2. V V V中定义数乘运算,当 x ∈ V , k ∈ K x\in V,k\in K xV,kK,有唯一的乘积 k v ∈ V kv\in V kvV,且数乘运算满足:
    e) 数因子分配律 k ( x + y ) = k x + k y k(x+y)=kx+ky k(x+y)=kx+ky
    f) 分配律 ( k + l ) x = k x + l x (k+l)x=kx+lx (k+l)x=kx+lx
    g) 结合律 k ( l x ) = ( k l ) x k(lx)=(kl)x k(lx)=(kl)x
    h) 1 x = x 1x=x 1x=x

线性子空间

S S S是数域 K K K上的线性空间 V V V的一个非空子集,称 S S S V V V的一个线性空间,当

  1. 如果 x , y ∈ S x,y\in S x,yS,则 x + y ∈ S x+y\in S x+yS(对加法封闭)
  2. 如果 x ∈ S , k ∈ K x\in S,k\in K xS,kK,则 k x ∈ S kx\in S kxS(对数乘封闭)

S S S W W W是线性空间 V V V的线性子空间, S ∩ W S\cap W SW也是 V V V的线性子空间,但是 S ∪ W S\cup W SW则不一定是 V V V的线性子空间

四个基本子空间

C ( A ) : c o l u m n   s p a c e   o f   A C(A):column\ space\ of \ A C(A):column space of A

列向量张成的空间, p i v o t   c o l u m n s pivot\ columns pivot columns构成了 C ( A ) C(A) C(A)的一组基

d i m   C ( A ) = r a n k ( A ) = # p i v o t s   o f   A dim\ C(A)=rank(A)=\#pivots\ of\ A dim C(A)=rank(A)=#pivots of A

N ( A ) : n u l l   s p a c e   o f   A N(A):null\ space\ of \ A N(A):null space of A

A x = 0 Ax=0 Ax=0的解空间是 ℜ n \real^n n的一个线性子空间

证明
若有 v , w ∈ ℜ n v,w\in\real^n v,wn,满足 A v = 0 , A w = 0 Av=0,Aw=0 Av=0,Aw=0,必有 c , d ∈ ℜ c,d\in \real c,d A ( c v + d w ) = 0 A(cv+dw)=0 A(cv+dw)=0,证毕
如何求解 N ( A ) N(A) N(A),将在其他部分给出。

N ( A ) N(A) N(A)的一组基是矩阵方程 A x = 0 Ax=0 Ax=0的一组最大线性无关特解
d i m   N ( A ) = n − r a n k ( A ) = # f r e e   v a r i a b l e s   o f   A dim\ N(A)=n-rank(A)=\#free\ variables\ of\ A dim N(A)=nrank(A)=#free variables of A

C ( A T ) : r o w   s p a c e   o f   A C(A^T):row\ space\ of \ A C(AT):row space of A

行向量张成的空间, R R E F RREF RREF的前 r r r构成了 C ( A T ) C(A^T) C(AT)的一组基,后面解释含义
d i m   C ( A T ) = d i m   C ( A ) = r a n k   A dim\ C(A^T)=dim\ C(A)=rank\ A dim C(AT)=dim C(A)=rank A

N ( A T ) : l e f t   n u l l   s p a c e   o f   A N(A^T):left\ null\ space\ of \ A N(AT):left null space of A

d i m   N ( A ) = m − r a n k ( A ) dim\ N(A)=m-rank(A) dim N(A)=mrank(A)

要想求左零空间的基,先考虑行空间
以矩阵 A A A为例
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] A= \left[ \begin{matrix} 1&2&3&1\\ 1&1&2&1\\ 1&2&3&1 \end{matrix} \right] A=111212323111
化为 R R E F RREF RREF
R = [ 1 1 1 1 1 ] R= \left[ \begin{matrix} 1&&1&1\\ &1&1&\\ &&& \end{matrix} \right] R=11111
显然 C ( R ) ≠ C ( A ) C(R)\not=C(A) C(R)=C(A)
但是,行变换对行空间不会有影响,因为变换后的行也是原始行向量的线性组合,而行空间的一组基正是 R R R的前 2 2 2 ( r a n k   A = 2 ) (rank\ A=2) (rank A=2),而 A A A的前 r a n k   A rank\ A rank A行却不一定是行空间的一组基

接下来回到左零空间,左零空间是 A T y = 0 A^Ty=0 ATy=0的解空间,也是 y T A = 0 y^TA=0 yTA=0的解空间,可见左零空间中的一个元素 y y y,是在矩阵 A A A的左边,故曰左零空间,构造左零空间矩阵 Y Y Y,则 Y A = O YA=O YA=O

在上面的 A → R A\rightarrow R AR的过程中,用到了消元矩阵 E E E,消元矩阵求解算法如下
构造矩阵 [ A m ∗ n ∣ I m ∗ m ] [A_{m*n}|I_{m*m}] [AmnImm],执行 A → R A\rightarrow R AR同样的行变换,化为 [ R m ∗ n ∣ E m ∗ m ] [R_{m*n}|E_{m*m}] [RmnEmm]
得到
E A = R EA=R EA=R
[ − 1 2 1 − 1 − 1 1 ] [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = [ 1 1 1 1 1 ] \left[ \begin{matrix} -1&2&\\ 1&-1&\\ -1& &1 \end{matrix} \right] \left[ \begin{matrix} 1&2&3&1\\ 1&1&2&1\\ 1&2&3&1 \end{matrix} \right]= \left[ \begin{matrix} 1&&1&1\\ &1&1&\\ &&& \end{matrix} \right] 111211111212323111=11111
R R R存在零行,对R进行分块
R = [ C O ] R= \left[ \begin{matrix} C\\ O\\ \end{matrix} \right] R=[CO]
E E E做同样的分块
E = [ B Y ] E= \left[ \begin{matrix} B\\ Y\\ \end{matrix} \right] E=[BY]
可以得到
B A = C BA=C BA=C
Y A = O YA=O YA=O
这里的 Y Y Y就是要求的左零空间矩阵 ,其行向量构成了左零空间的一组基

四个基本子空间的关系

根据零空间的定义 A x = 0 Ax=0 Ax=0,可知
r o w   v e c t o r   i   ⋅   x = 0 , i = 1 , 2 , . . . , n row\ vector\ i\ \cdot\ x=0,i=1,2,...,n row vector i  x=0,i=1,2,...,n
所以 N ( A ) ⊥ C ( A T ) N(A)\perp C(A^T) N(A)C(AT),同理可得 N ( A T ) ⊥ C ( A ) N(A^T)\perp C(A) N(AT)C(A)

又因为 d i m   N ( A ) = m − r dim\ N(A)=m-r dim N(A)=mr d i m   N ( A T ) = n − r dim\ N(A^T)=n-r dim N(AT)=nr d i m   C ( A T ) = d i m   C ( A ) = r dim\ C(A^T)=dim\ C(A)=r dim C(AT)=dim C(A)=r

零空间和行空间互为正交补,左零空间和列空间互为正交补。

矩阵空间

所有 m ∗ n m*n mn的矩阵,可以构成一个线性空间
以3*3矩阵空间 M M M为例
维度 d i m   M = 9 dim\ M=9 dim M=9
子空间

  1. U = { n ∗ n   u p p e r   t r i a n g u l a r   m a t r i c e s } U=\{n*n\ upper\ triangular\ matrices\} U={nn upper triangular matrices} d i m   U = 6 dim\ U=6 dim U=6
  2. S = { n ∗ n   s y m m e t r i c   m a t r i c e s } S=\{n*n\ symmetric\ matrices\} S={nn symmetric matrices} d i m   U = 6 dim\ U=6 dim U=6
  3. D = { n ∗ n   d i a g o n a l   m a t r i c e s } D=\{n*n\ diagonal\ matrices\} D={nn diagonal matrices} d i m   D = 3 dim\ D=3 dim D=3

D = S ∩ U D=S\cap U D=SU
但是 S ∪ U S\cup U SU不是子空间,如果想构成子空间,需要补充一些元素形成线性空间
S + U = a n y   e l e m e n t s   o f   S + a n y   e l e m e n t s   o f   U = a l l   3 ∗ 3   m e t r i c e s S+U=any\ elements\ of\ S+any\ elements\ of\ U=all\ 3*3\ metrices S+U=any elements of S+any elements of U=all 33 metrices
M = S + U M=S+U M=S+U
可见 d i m   ( S + U ) + d i m   D = d i m   S + d i m   U dim\ (S+U)+dim\ D=dim\ S+dim\ U dim (S+U)+dim D=dim S+dim U

维数公式

实际上对于线性空间 V V V的两个子空间 V 1 , V 2 V_1,V_2 V1,V2,其维度有关系
d i m   V 1 + d i m   V 2 = d i m   V 1 ∩ V 2 + d i m   V 1 + V 2 dim\ V_1+dim\ V_2=dim\ V_1\cap V_2+dim\ V_1+V_2 dim V1+dim V2=dim V1V2+dim V1+V2
这个道理有点像有集合的基数公式,有集合 S 1 , S 2 S1,S2 S1,S2
c a r d ( S 1 ) + c a r d ( S 2 ) = c a r d ( S 2 ∪ S 1 ) + c a r d ( S 2 ∩ S 1 ) card(S_1)+card(S_2)=card(S_2\cup S_1)+card(S_2\cap S_1) card(S1)+card(S2)=card(S2S1)+card(S2S1)
在这里插入图片描述
严格的证明需要扩基定理

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值