- 博客(22)
- 收藏
- 关注
原创 线性代数-MIT-汇总版
线性代数-MIT-汇总版1.线性代数-MIT-第1讲-方程的几何解释2.线性代数-MIT-第2讲-矩阵消元3.线性代数-MIT-第3讲-矩阵乘法和逆矩阵4.线性代数-MIT-第4讲-LU分解5.线性代数-MIT-第5讲-转置置换和向量空间6.线性代数-MIT-第6讲-列空间和零空间7.线性代数-MIT-第7讲-求解Ax=0:主变量、特解8.线性代数-MIT-第8讲-...
2019-12-27 13:35:47 450
原创 Eigen/Cmake/Ros/GDB/ORBSLAM2/G2O基础快速入门资料
以下资料搜集于公众号,SLAM之路Eigen库:Eigen入门指导书1--矩阵类Eigen入门指导书2--矩阵和向量算数运算orbslam2系列:手撕orb_slam2系列-跟踪-总讲手撕orb_slam2系列-跟踪-图像帧gdb系列:GDB调试快速入门-1cmake系列:cmake快速入门-1g2o系列:非线性优化库G20实战套路ros系列:机器人系统ROS快速入门总结...
2021-08-05 08:37:56 197
原创 Opencv系列1.7--图像和视频
更多更详细的文章请关注微信公众号:SLAM之路概要HighGUI:即high-level graphical user interface,,高级图像用户接口,使我们可以读取和写入与图像相关的文件(图像和视频),打开和管理窗口,展示图片,处理简单的鼠标、指针、键盘活动。HighGUI库可以分为三部分:硬件部分、文件系统部分、GUI部分。硬件部分:主要涉及相机操作;文件系统部分:图像加载和保存;典型特征之一是,读取视频和读取相机采用相同的方法;GUI部分:使我们能打开窗口,并将图像
2020-09-10 14:29:32 168
原创 Opencv系列1.4--图像和大型数据类型
更多更详细的文章请关注微信公众号:SLAM之路大型数组类型中最为重要的是,cv::Mat类,是整个Opencv C++库的核心;可用于表示任意维度的稠密数组,大多数图像都是采用稠密数组形式,即数组每一项都存储有数值;此外,还有一种cv::SparseMat类存储稀疏矩阵,即仅存储非零项,可节约存储空间,例如直方图;cv::Mat中数据以一种类似n维光栅扫描的方式存储,即一维数组按照顺序排列;二维数组中,数据组织为行结构,一行紧跟一行;三维数组中,每个平面均按照行接行填充,然后一个平面接一个平面;
2020-09-10 14:27:03 194
原创 Opencv系列1.3--Opencv数据结构
Opencv数据结构整体分为三大类i.基本数据类型,直接由C++数据元素(int,float,等等)组成,如简单向量、简单矩阵或者表示几何概念的点、矩形、大小等等;ii.helper objects,用于表示抽象的概念,如garbage-collecting pointer class、range objects;iii.大数组类型,用于包含大规模数组、大规模几何元素、大规模基本数据类型;典型例子如cv::Mat类,用于表示任意维度数组包含任意基本数据类型;iv.标准容器库,STL;Ⅰ、
2020-09-10 14:22:59 414
原创 Opencv系列1.2--实例介绍
更多更详细的文章请关注微信公众号:SLAM之路本部分通过三个简单实例,介绍Opencv程序的整体架构,并介绍简易的读取可写入方法等基本操作,认识一些基本的库;0、头文件include1、读取显示图片2、读取显示视频3、视频快进快退4、简易变换5、稍难变换6、从相机输入7、写视频0、头文件includeC语言前段包含了头文件,而Opencv的库文件通过include构造了模块化的函数库,可根据实际应用情况进行选择,以提高运编译速度;或者使用总的文件库,包含了Op
2020-09-10 14:20:44 246
原创 多视角几何1-理想点、无穷远线、圆锥曲线
更多更详细的文章请关注微信公众号:SLAM之路本节介绍后续文章涉及到的几何思想和符号定义,以便于理解交流。其中一些想法比较熟悉,如消失点的形成、圆锥曲线表示方法等,而另一些想法较难理解,如使用圆点移除图像中的透视畸变。这些想法在2维平面因可视化强易于理解。至于3维空间几何,将在后续文章详细介绍,它也仅是2维平面的一种泛化应用。所以,本节及后续文章要先谈论平面投影变换的几何内容。这些变换的建立基于几何学的畸变模型,而畸变在透视相机的平面成像过程中出现。在透视成像时,某些几何性质保留下来,如相关线性
2020-06-17 16:31:34 1327
原创 线性代数-MIT-第11讲
线性代数-MIT-第11讲目录线性代数-MIT-第11讲1.新向量空间的基2.矩阵的秩3.小世界图1.新向量空间的基矩阵构成向量空间:以3x3矩阵构成的空间M为例,加法和数乘仍停留在3x3的矩阵空间中,存在若干种子空间,如对称矩阵的子空间,上三角阵子空间,下三角阵子空间,那子空间的基和维度是多少?整个3x3矩阵空间的维度是9,基是九个数分别为1其他为零的...
2020-01-03 21:34:12 835 1
原创 线性代数-MIT-第10讲
线性代数-MIT-第10讲目录线性代数-MIT-第10讲1.列空间C(A)2.零空间N(A)3.行空间4.左零空间5.新型向量空间1.列空间C(A) 假设矩阵A,,则,它的基和维数? 根据秩的定义可知,dim(C(A))=rank(A)=r,矩阵A的主列就是基;2.零空间N(A) 假设矩阵A,,则,它的基和维数? 根据A...
2019-12-30 19:00:39 891
原创 四元数学习[Quaterniond kinematics for the error-state Kalman filter]汇总
1.四元数学习定义2.旋转与四元数
2019-12-27 17:03:59 1220
原创 线性代数-MIT-第9讲
线性代数-MIT-第9讲目录线性代数-MIT-第9讲1.线性相关性2.向量生产空间3.向量空间的基4.空间的维数1.线性相关性 注:相关性是针对向量组而说的,而不是说矩阵背景知识: 假设有一个矩阵A,并准备求解Ax=0,假设矩阵有很多列,n>m, 即未知量多于方程数,则方程组Ax=0含有非零解;什么条件下,向量x1,...
2019-12-25 21:54:10 713
原创 线性代数-MIT-第8讲
线性代数-MIT-第8讲目录线性代数-MIT-第8讲1.Ax=b的可解性2.Ax=b的算法3.满秩1.Ax=b的可解性 解存在情况:a.0解,b.有解(唯一解或多解),如何判断?举例, 什么样的b会有解?消元告诉我们必须,b3=b1+b2; 将A和b形成增广矩阵,进行消元; ...
2019-12-25 20:35:23 480
原创 线性代数-MIT-第7讲
线性代数-MIT-第7讲目录线性代数-MIT-第7讲1.计算零空间Ax=02.主变量pivot variables-自由变量free variables3.简化行阶梯形式矩阵rref1.计算零空间Ax=0举例,矩阵A(3x4): , 列2是列1的两倍,列向量是线性相关;行3=行1+行2,行向量也相关;消元过程不会改变解...
2019-12-24 21:38:08 511
原创 线性代数-MIT-第6讲
线性代数-MIT-第6讲目录线性代数-MIT-第6讲1.向量空间与子空间2.列空间3.零空间1.向量空间与子空间 向量空间,即空间内任意两向量相加或数乘仍在空间内,即对线性组合封闭; 即空间任意向量v、w,对于任意实数c、d,都满足cv+dw仍在空间内; 子空间,即某向量空间取其部分,仍能满足对向量加法和数乘...
2019-12-22 20:56:22 311
原创 线性代数-MIT-第5讲
线性代数-MIT-第5讲目录线性代数-MIT-第5讲1.置换和转置2.向量空间和子空间:1.置换和转置置换矩阵P,用来完成行交换,可逆矩阵A,解Ax=b主元存在0,则需行交换;置换矩阵,即是行重新排列了的单位矩阵(identity matrix);对于n阶矩阵,置换矩阵的数量为n!;置换矩阵P的性质:在没有行交换的消元过程中:A=LU,若存在行交...
2019-12-22 19:14:21 414
原创 线性代数-MIT-第4讲
线性代数-MIT-第4讲目录线性代数-MIT-第4讲1.矩阵AB的逆2.消元矩阵的乘积3.转置与置换1.矩阵AB的逆 2.消元矩阵的乘积最基础的矩阵分解A=LU: A通过消元矩阵得到上三角阵U,L联系这A和U; E21 A = U ...
2019-12-22 17:50:47 262
原创 线性代数-MIT-第3讲
第3讲-乘法和逆矩阵目录第3讲-乘法和逆矩阵1.矩阵乘法(4种方法)2.矩阵的逆(方阵)3.高斯乔丹法则4.乘积的逆1.矩阵乘法(4种方法)矩阵A*矩阵B=矩阵C A B C什么情况下矩阵才能进行相乘? ...
2019-12-18 17:15:41 224
原创 线性代数-MIT-第2讲
第二讲.矩阵消元1.消元:成功or失败 解方程组的有效方法,基础;成功:(红色为主元)主元不能为零,其下元素全为0; A b U(上三角阵)c 采用增广矩阵,增加b列,同步加减;A->U,b->c...
2019-12-18 14:26:13 307
原创 线性代数-MIT-第1讲
目录1.方程的几何解释1.1.n个线性方程,n个未知量1.2.行图像1.3.列图像1.4.矩阵形式1.方程的几何解释1.1.n个线性方程,n个未知量2x2: A x = b 系数...
2019-12-17 22:36:26 484
原创 四元数学习[Quaterniond kinematics for the error-state Kalman filter]-2
目录1.What-旋转群(SO(3))2.How-旋转群(SO(3))和旋转矩阵(R)2.1旋转矩阵指数映射:2.2旋转矩阵与旋转向量关系2.3旋转矩阵对数映射3.How-旋转群(SO(3))和四元数(Q)3.1四元数指数映射3.2四元数与旋转向量3.3四元数对数映射3.4旋转矩阵与四元数3.5四元数和旋转矩阵球形插值1.What-旋转群(SO(3)...
2019-12-16 22:15:33 1123
原创 四元数学习[Quaterniond kinematics for the error-state Kalman filter]-1
目录1.What-四元数2.How-四元数basis3.How-四元数advance 1.What-四元数定义1:若存在两个复数A=a+bi和C=c+di,构建Q=A+Cj并定义k=ij,因此生成四元数空间H: ...
2019-12-13 16:37:13 1345
原创 从零手写VIO-第1讲
第1讲1.What2.How3.Connection:4.Why 紧耦合:5.后续预备知识6.作业系列教程来自某学院,侵权删除。学习完这一系列课程再去看VINS才能做到不吃力,不然直接撸网上的各种VINS解析完全云里雾里-_-!1.WhatVIO(visual-inertial odometry): 顾名思义即是以融合视觉及IMU实现里程计;IM...
2019-12-13 09:31:06 414
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人