[笔记][总结] MIT线性代数 Gilbert Strang 线性方程组

作者水平有限,欢迎大家提出文中错误

A x = b Ax=b Ax=b的行图像

行图像就是在高中一直学习的函数图像,交点为方程组的解
A = [ r o w   1 ( A ) r o w   2 ( A ) ⋮ r o w   m ( A ) ] A= \left[ \begin{matrix} row\ 1(A)\\ row\ 2(A)\\ \vdots\\ row\ m(A) \end{matrix} \right] A=row 1(A)row 2(A)row m(A)
A x = [ r o w   1 ( A ) ⋅ x r o w   2 ( A ) ⋅ x ⋮ r o w   m ( A ) ⋅ x ] = [ b 1 b 2 ⋮ b m ] Ax= \left[ \begin{matrix} row\ 1(A)·x\\ row\ 2(A)·x\\ \vdots\\ row\ m(A)·x \end{matrix} \right] = \left[ \begin{matrix} b_1\\ b_2\\ \vdots\\ b_m \end{matrix} \right] Ax=row 1(A)xrow 2(A)xrow m(A)x=b1b2bm
[ 3 1 1 − 1 ] [ x 1 x 2 ] = [ 1 0 ] \left[ \begin{matrix} 3 & 1\\ 1 & -1\\ \end{matrix} \right] \left[ \begin{matrix} {x_1}\\ {x_2} \end{matrix} \right]= \left[ \begin{matrix} 1\\ 0 \end{matrix} \right] [3111][x1x2]=[10]
在这里插入图片描述

A x = b Ax=b Ax=b的列图像

列图像强调 A x Ax Ax其实是矩阵 A A A各列的线性组合
A = [ c o l u m n   1 ( A ) c o l u m n   3 ( A ) … c o l u m n   n ( A ) ] A= \left[ \begin{matrix} column\ 1(A) &column\ 3(A) \dots &column\ n(A) \end{matrix} \right] A=[column 1(A)column 3(A)column n(A)]
A x = ∑ i = 1 n x i   c o l u m n   i ( A ) = b Ax=\sum\limits^n_{i=1}x_i\ column\ i(A) =b Ax=i=1nxi column i(A)=b
[ 3 1 1 − 1 ] [ x 1 x 2 ] = [ 1 0 ] \left[ \begin{matrix} 3 & 1\\ 1 & -1\\ \end{matrix} \right] \left[ \begin{matrix} {x_1}\\ {x_2} \end{matrix} \right]= \left[ \begin{matrix} 1\\ 0 \end{matrix} \right] [3111][x1x2]=[10]
在这里插入图片描述

齐次方程 A x = 0 Ax=0 Ax=0

直接举例:
A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A= \left[ \begin{matrix} 1&2&2&2\\ 2&4&6&8\\ 3&6&8&10 \end{matrix} \right] A=1232462682810
E 21 , e 21 = − 2 E_{21},e_{21}=-2 E21,e21=2
E 31 , e 31 = − 3 E_{31},e_{31}=-3 E31,e31=3
[ 1 2 2 2 0 0 2 4 0 0 2 4 ] \left[ \begin{matrix} 1&2&2&2\\ 0&0&2&4\\ 0&0&2&4 \end{matrix} \right] 100200222244
E 32 , e 32 = − 1 E_{32},e_{32}=-1 E32,e32=1
U = [ 1 2 2 2 0 0 2 4 0 0 0 0 ] ( e c h e l o n   f o r m ) U= \left[ \begin{matrix} 1&2&2&2\\ 0&0&2&4\\ 0&0&0&0 \end{matrix} \right](echelon\ form) U=100200220240(echelon form)
注意此处 U U U矩阵有两个主元,所以 r a n k   A = 2 rank\ A=2 rank A=2

主元所在列被称为主列 p i v o t   c o l u m n pivot\ column pivot column,其他列被称为自由列 f r e e   c o l u m n free\ column free column
对于线性方程组,主元位置对应的变量被称为主变量 p i v o t   v a r i a b l e s pivot\ variables pivot variables,其他变量为自由变量 f r e e   v a r i a b l e s free\ variables free variables

算法继续,将方程组的矩阵形式写回方程组
{ x 1 + 2 x 2 + 2 x 3 + 2 x 4 = 0 2 x 3 + 4 x 4 = 0 \left\{ \begin{aligned} x_1+2x_2+2x_3+2x_4=0\\ 2x_3+4x_4=0 \end{aligned} \right. {x1+2x2+2x3+2x4=02x3+4x4=0
为什么说 x 2 , x 4 x_2,x_4 x2,x4是自由变量,是因为 x 2 , x 4 x_2,x_4 x2,x4可自由取值,通过回代,确定 x 1 , x 3 x_1,x_3 x1,x3
x 2 = 1 , x 4 = 0 x_2=1,x_4=0 x2=1,x4=0,则 x 1 = − 2 , x 3 = 0 x_1=-2,x_3=0 x1=2,x3=0
x 2 = 0 , x 4 = 1 x_2=0,x_4=1 x2=0,x4=1,则 x 1 = 2 , x 3 = − 2 x_1=2,x_3=-2 x1=2,x3=2
至此求出了 N ( A ) N(A) N(A)的两个基,而这两个基可以张成整个零空间,因为 d i m   N ( A ) = n − r = 2 dim\ N(A)=n-r=2 dim N(A)=nr=2,对这两个基线性组合,每一种线性组合都是 A x = 0 Ax=0 Ax=0的解。

但是其实矩阵 U U U还可以进一步化简为简化行阶梯形式 R ( R e d u c e d   r o w   e c h e l o n   f o r m ) R(Reduced\ row\ echelon\ form) R(Reduced row echelon form)
算法继续
U = [ 1 2 2 2 0 0 2 4 0 0 0 0 ] U= \left[ \begin{matrix} 1&2&2&2\\ 0&0&2&4\\ 0&0&0&0 \end{matrix} \right] U=100200220240
E 12 , e 12 = − 1 E_{12},e_{12}=-1 E12,e12=1
U = [ 1 2 0 − 2 0 0 2 4 0 0 0 0 ] U= \left[ \begin{matrix} 1&2&0&-2\\ 0&0&2&4\\ 0&0&0&0 \end{matrix} \right] U=100200020240
最后对 r o w   2 row\ 2 row 2做数乘
R = [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] ( R e d u c e d   r o w   e c h e l o n   f o r m ) R= \left[ \begin{matrix} 1&2&0&-2\\ 0&0&1&2\\ 0&0&0&0 \end{matrix} \right](Reduced\ row\ echelon\ form) R=100200010220(Reduced row echelon form)
其实从 U U U R R R的向上的消元,相当于回代

可以发现 R R R主元列主元行中包含了一个单位阵 I I I
R P 23 = [ 1 0 2 − 2 0 1 0 2 0 0 0 0 ] RP_{23}= \left[ \begin{matrix} 1&0&2&-2\\ 0&1&0&2\\ 0&0&0&0 \end{matrix} \right] RP23=100010200220
其中左乘置换矩阵代表列交换

可以将矩阵分块
R P 23 = [ I F O O ] RP_{23}= \left[ \begin{matrix} I&F\\ O&O\\ \end{matrix} \right] RP23=[IOFO]
整个方程化为 R P 23 P 32 x = 0 RP_{23}P_{32}x=0 RP23P32x=0,其中
P 32 x = [ x 1 x 3 x 2 x 4 ] = [ x p i v o t x f r e e ] P_{32}x= \left[ \begin{matrix} x_1\\ x_3\\ x_2\\ x_4\\ \end{matrix} \right]= \left[ \begin{matrix} x_{pivot}\\ x_{free}\\ \end{matrix} \right] P32x=x1x3x2x4=[xpivotxfree]
[ I F O 1 ∗ 2 O 1 ∗ 2 ] [ x p i v o t x f r e e ] = [ O 2 ∗ 1 O 2 ∗ 1 ] \left[ \begin{matrix} I&F\\ O_{1*2}&O_{1*2}\\ \end{matrix} \right] \left[ \begin{matrix} x_{pivot}\\ x_{free}\\ \end{matrix} \right]= \left[ \begin{matrix} O_{2*1}\\ O_{2*1}\\ \end{matrix} \right] [IO12FO12][xpivotxfree]=[O21O21]
下面构建一个零空间矩阵 N ( N u l l   s p a c e   m a t r i c e s ) N(Null \ space\ matrices) N(Null space matrices),满足
R N = 0 RN=0 RN=0
零空间矩阵的各列可张成整个零空间

沿用方程 R P 23 P 32 x = 0 RP_{23}P_{32}x=0 RP23P32x=0
P 32 N = [ X p i v o t X f r e e ] P_{32}N= \left[ \begin{matrix} X_{pivot}\\ X_{free}\\ \end{matrix} \right] P32N=[XpivotXfree]

[ I F O 1 ∗ 2 O 1 ∗ 2 ] [ X p i v o t X f r e e ] = [ O 2 ∗ 1 O 2 ∗ 1 ] \left[ \begin{matrix} I&F\\ O_{1*2}&O_{1*2}\\ \end{matrix} \right] \left[ \begin{matrix} X_{pivot}\\ X_{free}\\ \end{matrix} \right]= \left[ \begin{matrix} O_{2*1}\\ O_{2*1}\\ \end{matrix} \right] [IO12FO12][XpivotXfree]=[O21O21]
I X p i v o t + F X f r e e = O 2 ∗ 1 IX_{pivot}+FX_{free}=O_{2*1} IXpivot+FXfree=O21
解得
[ I F O 1 ∗ 2 O 1 ∗ 2 ] [ − F I ] = [ O 2 ∗ 1 O 2 ∗ 1 ] \left[ \begin{matrix} I&F\\ O_{1*2}&O_{1*2}\\ \end{matrix} \right] \left[ \begin{matrix} -F\\ I\\ \end{matrix} \right]= \left[ \begin{matrix} O_{2*1}\\ O_{2*1}\\ \end{matrix} \right] [IO12FO12][FI]=[O21O21]
X p i v o t = − F = [ − 2 2 0 − 2 ] X_{pivot}=-F= \left[ \begin{matrix} -2&2\\ 0&-2\\ \end{matrix} \right] Xpivot=F=[2022]
X f r e e = I = [ 1 1 ] X_{free}=I= \left[ \begin{matrix} 1&\\ &1\\ \end{matrix} \right] Xfree=I=[11]
消掉置换阵
N = [ − 2 2 1 0 0 − 2 0 1 ] N= \left[ \begin{matrix} -2&2\\ 1&0\\ 0&-2\\ 0&1\\ \end{matrix} \right] N=21002021
可以证明
C ( N ) = N ( A ) C(N)=N(A) C(N)=N(A)

非齐次方程 A x = b Ax=b Ax=b

例子1:
[ 1 2 2 2 2 4 6 8 3 6 8 10 ] [ x 1 x 2 x 3 x 4 ] = [ b 1 b 2 b 3 ] \left[ \begin{matrix} 1&2&2&2\\ 2&4 &6&8 \\ 3&6&8&10\\ \end{matrix} \right] \left[ \begin{matrix} x_1\\ x_2\\ x_3\\ x_4\\ \end{matrix} \right] =\left[ \begin{matrix} b_1\\ b_2\\ b_3\\ \end{matrix} \right] 1232462682810x1x2x3x4=b1b2b3
构造增广矩阵 A u g u m e n t   M a t r i c e s [ A ∣ b ] Augument\ Matrices[A|b] Augument Matrices[Ab]
[ 1 2 2 2 2 4 6 8 3 6 8 10 b 1 b 2 b 3 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&2&2\\ 2&4 &6&8 \\ 3&6&8&10\\ \end{matrix}& \begin{matrix} b_1\\ b_2\\ b_3\\ \end{matrix} \end{array} \right ] 1232462682810b1b2b3
通过高斯消元得到
[ 1 2 2 2 0 0 2 4 0 0 0 0 b 1 b 2 − 2 b 1 b 3 − b 2 − b 1 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&2&2\\ 0&0 &2&4 \\ 0&0&0&0\\ \end{matrix}& \begin{matrix} b_1\\ b_2-2b_1\\ b_3-b_2-b_1\\ \end{matrix} \end{array} \right ] 100200220240b1b22b1b3b2b1
可见如果 b 3 − b 2 − b 1 ≠ 0 b_3-b_2-b_1\not=0 b3b2b1=0方程无解,原因是那样的话 b ∉ C ( A ) b\notin C(A) b/C(A)

假设 b = ( 1 , 5 , 6 ) b=(1,5,6) b=(1,5,6)
[ 1 2 2 2 0 0 2 4 0 0 0 0 1 3 0 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&2&2\\ 0&0 &2&4 \\ 0&0&0&0\\ \end{matrix}& \begin{matrix} 1\\ 3\\ 0\\ \end{matrix} \end{array} \right ] 100200220240130
写成线性方程组
{ x 1 + 2 x 2 + 2 x 3 + 2 x 4 = 1 2 x 3 + 4 x 4 = 3 \left\{ \begin{aligned} x_1+2x_2+2x_3+2x_4=1\\ 2x_3+4x_4=3 \end{aligned} \right. {x1+2x2+2x3+2x4=12x3+4x4=3
首先找一个特解,不妨设所有自由变量都等于0,得
{ x 1 +    0    + 2 x 3 +    0    = 1 2 x 3 +    0    = 3 \left\{ \begin{aligned} x_1+\ \ 0\ \ +2x_3+\ \ 0\ \ =1\\ 2x_3+\ \ 0\ \ =3 \end{aligned} \right. {x1+  0  +2x3+  0  =12x3+  0  =3
解得 x 3 = 1.5 , x 1 = − 2 x_3=1.5,x_1=-2 x3=1.5,x1=2,则有特解 x p a r t i c u l a r = ( − 2 ,   0 ,   1.5 ,   0 ) x_{particular}=(-2,\ 0,\ 1.5,\ 0) xparticular=(2, 0, 1.5, 0)

为什么要先找一个特解,因为对于非齐次线性方程组,解的结构是
x = x p a r t i c u l a r + x n u l l   s p a c e x=x_{particular}+x_{null\ space} x=xparticular+xnull space
证明:
已知
A x p a r t i c u l a r = b Ax_{particular}=b Axparticular=b

A x n u l l   s p a c e = 0 Ax_{null\ space}=0 Axnull space=0
两边分别相加
A ( x p a r t i c u l a r + x n u l l   s p a c e ) = b A(x_{particular}+x_{null\ space})=b A(xparticular+xnull space)=b
证毕

所以接下来,只需要求解 N ( A ) N(A) N(A),即可完成求解

A x = b Ax=b Ax=b的解空间

上一节,得知解的结构是 x = x p a r t i c u l a r + x n u l l   s p a c e x=x_{particular}+x_{null\ space} x=xparticular+xnull space
可以看出解空间 S = x p a r t i c u l a r + N ( A ) S=x_{particular}+N(A) S=xparticular+N(A),显然 S S S不再是向量空间,而是由向量空间 N ( A ) N(A) N(A)平移了(或加上) x p a r t i c u l a r x_{particular} xparticular的不过原点的空间。

比如线性方程 1 2 x + y − 2 z = a \frac{1}{2}x+y-2z=a 21x+y2z=a,解空间随 a a a的变化如下
在这里插入图片描述

r a n k   A rank\ A rank A与可解性

行列都不满秩

对于 r < m , r < n r<m,r<n r<m,r<n的矩阵方程 A x = b Ax=b Ax=b,由矩阵列图像可知只有当 b ∈ C ( A ) b \in C(A) bC(A),方程才有解
A = [ 3 1 − 1 − 3 − 1 1 ] , b = [ a 1 ] A=\left[ \begin{matrix} 3 & 1 & -1\\ -3 & -1 & 1\\ \end{matrix} \right], b=\left[ \begin{matrix} a\\ 1\\ \end{matrix} \right] A=[331111],b=[a1]
在这里插入图片描述
a = − 1 a=-1 a=1,两平面重合,此时方程有无穷解
a = 1 a=1 a=1,两平面平行,此时方程有无解
此类矩阵的 R R E F ( R e d u c e d   r o w   e c h e l o n   f o r m ) RREF(Reduced\ row\ echelon\ form) RREF(Reduced row echelon form)形状为
R = [ I F O O ] R= \left[ \begin{matrix} I & F\\ O & O\\ \end{matrix} \right] R=[IOFO]

行满秩,列未满秩

此时称线性方程组是欠定的
A = [ 3 1 1 − 3 1 − 1 ] , b = [ a 1 ] A=\left[ \begin{matrix} 3 & 1 & 1\\ -3 & 1 & -1\\ \end{matrix} \right], b=\left[ \begin{matrix} a\\ 1\\ \end{matrix} \right] A=[331111],b=[a1]
在这里插入图片描述
当行满秩的时候,解空间的维度是 n − m n-m nm。因为 d i m   C ( A ) = m dim\ C(A)=m dim C(A)=m,所以 ∀   b ∈ R m , b ∈ C ( A ) \forall\ b\in\mathbb R^m,b\in C(A)  bRm,bC(A),对任意 b b b总有解而解无穷
此类矩阵的 R R E F RREF RREF形状为
R = [ I F ] R= \left[ \begin{matrix} I & F\\ \end{matrix} \right] R=[IF]

列满秩,行未满秩

此时称线性方程组是超定的
A = [ 3 − 3 1 1 2 − 1 ] , b = [ a 0 1 ] A=\left[ \begin{matrix} 3&-3\\ 1&1\\ 2&-1\\ \end{matrix} \right], b=\left[ \begin{matrix} a\\ 0\\ 1\\ \end{matrix} \right] A=312311,b=a01
在这里插入图片描述
在列满秩的时候,只有当 b ∈ C ( A ) b\in C(A) bC(A)时, A x = b Ax=b Ax=b有唯一解,否则无解
此类矩阵的 R R E F RREF RREF形状为
R = [ I O ] R= \left[ \begin{matrix} I\\ O\\ \end{matrix} \right] R=[IO]
N ( A ) = { 0 } N(A)=\{0\} N(A)={0}

满秩

A = [ 1 0 1 1 1 2 0 − 1 1 ] , b = [ 1 1 1 ] A=\left[ \begin{matrix} 1&0&1\\ 1&1 &2 \\ 0&-1&1\\ \end{matrix} \right], b=\left[ \begin{matrix} 1\\ 1\\ 1\\ \end{matrix} \right] A=110011121,b=111
在这里插入图片描述
满秩情况下, A x = b Ax=b Ax=b总有解且唯一
此类矩阵的 R R E F RREF RREF形状为
R = I R=I R=I

总之, A x = b Ax=b Ax=b要想可解,充分必要条件是 b ∈ C ( A ) b\in C(A) bC(A);而解要想唯一, A A A各列必须线性无关。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值