Dijkstra算法

void Dijkstra ( int G[][N],int v0,int  dist[],int path[],int n)
{
    int i,j,k,s[n],minD;
    for(i=1;i<=n;i++)
    {
        s[i]=0;
        dist[i]=G[v0][i];
        if(!=v0&&dist[i]<INT_MAX)
            path[i]=v0;
        else
            path[i]=-1;
    }
    s[vo]=1;
    for(i=1;i<n;i++)
        {
            minD=INT_MAX;
            for(j=1;j<=n;j++)
            {
                if(s[j]==0&&dist[j]<INT_MAX)
                {
                     minD=dist[j];
                     k=j;
                }  
                s[k]=1; 
            }
            for(j=1;j<=n;j++)
            {
                if(s[j]==0&&G[k][j]<INT_MAX&&dist[j]>G[k][j]+dist[k])
                {
                    dist[j]=G[k][j]+dist[k];
                    path[j]=k;
                }
            }
        }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值