Bzoj2005[Noi2010]能量采集

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

5 4

【样例输入2】

3 4

Sample Output

【样例输出1】

36

【样例输出2】

20

【数据规模和约定】

对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

解法1:莫比乌斯反演

复杂度: O(n)

代码:

/*
* @Author: Heristor
* @Date:   2015-06-09 23:00:59
* @Last Modified by:  Heristor
* @Last Modified time: 2016-06-16 10:58:03
*/

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <ctime>
#include <vector>

using namespace std;

#define rep(i,l,r) for(i=l;i<=r;i++)
#define ser(i,r,l) for(i=r;i>=l;i--)
#define INF 100005
#define inf 1000000007

typedef long long ll;
priority_queue<int >QwQ;

int n,m,tot=0;
int in[INF],Phi[INF],Prime[INF];
ll Ans=0,tmp=0;
int read()
{
    int k=0,f=1;
    char ch;
    while(ch<'0' || ch>'9'){
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(ch>='0' && ch<='9')k=(k<<1)+(k<<3)+ch-'0',ch=getchar();
    return k*f;
}
void init()
{
    int i,j,k;
    n=read(),m=read();
    if(n>m)swap(n,m);
    Phi[1]=1;
    rep(i,2,n){
        if(!in[i]){
            Phi[i]=i-1;
            Prime[++tot]=i;
        }
        for(j=1;j<=tot && i*Prime[j]<=n;j++){
            in[i*Prime[j]]=1;
            if(!(i%Prime[j])){
                Phi[i*Prime[j]]=Phi[i]*Prime[j];
                break;
            }
            else Phi[i*Prime[j]]=Phi[i]*(Prime[j]-1);
        }
    }
    rep(i,1,n){
        tmp=n/i;
        tmp*=(ll)m/i;
        tmp*=(ll)Phi[i];
        Ans+=tmp;
    }
    Ans*=2;
    Ans-=(ll)m*n;
    printf("%lld\n",Ans);
}
void work()
{
    int i,j,k;
}
int main()
{
    freopen("Bzoj2005.in","r",stdin);
    freopen("Bzoj2005.out","w",stdout);
    init();
    work();
    return 0;
}

解法2: 容斥

复杂度: O(nlogn)

代码:

/*
* @Author: Heristor
* @Date:   2016-06-16 11:11:18
* @Last Modified by:   Heristor
* @Last Modified time: 2016-06-17 08:37:19
*/

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <ctime>
#include <vector>

using namespace std;

#define rep(i,l,r) for(i=l;i<=r;i++)
#define ser(i,r,l) for(i=r;i>=l;i--)
#define INF 100005
#define inf 1000000007

typedef long long ll;
priority_queue<int >QwQ;

int n,m;
ll Ans=0;
ll f[INF];
int read()
{
    int k=0,f=1;
    char ch;
    while(ch<'0' || ch>'9'){
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(ch>='0' && ch<='9')k=(k<<1)+(k<<3)+ch-'0',ch=getchar();
    return k*f;
}
void init()
{
    int i,j,k;
    n=read(),m=read();
    if(n>m)swap(n,m);
    ser(i,n,1){
        f[i]=(ll)n/i;
        f[i]*=(ll)m/i;
        for(j=2*i;j<=n;j+=i)f[i]-=f[j];
        Ans+=f[i]*(ll)i;
    }
    Ans*=2;
    Ans-=(ll)m*n;
    printf("%lld\n", Ans);
}
void work()
{
    int i,j,k;
}
int main()
{
    freopen("Bzoj2005.in","r",stdin);
    freopen("Bzoj2005.out","w",stdout);
    init();
    work();
    return 0;
}
发布了9 篇原创文章 · 获赞 0 · 访问量 3061
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览