【西电|视觉媒体通信】边缘检测算法(视频图像处理)

目的

编程实现一个图像处理算法,本文实现了边缘检测算法。

工具

Visual Studio、C++。

代码

注意:文件路径要使用"C:\\..."或"C:/",不要使用"C:\",因为"\"在C++中是转义符号。

注意:OpenCV版本为"3.4.16",FFMPEG版本为"gyan.dev -> ffmpeg-6.1.1-full-build-shared.7z"。

注意:OpenCV、FFMPEG需要在Visual Studio中安装。

#include <opencv2/opencv.hpp>
#include <iostream>
#include <stack>

using namespace cv;
using namespace std;

// 非极大值抑制
void nonMaxSuppression(const Mat& gradientMagnitude, const Mat& gradientDirection, Mat& suppressed)
{
    suppressed = Mat::zeros(gradientMagnitude.size(), CV_32F);

    for (int i = 1; i < gradientMagnitude.rows - 1; ++i)
    {
        for (int j = 1; j < gradientMagnitude.cols - 1; ++j)
        {
            float angle = gradientDirection.at<float>(i, j);
            float mag = gradientMagnitude.at<float>(i, j);
            float mag1 = 0, mag2 = 0;

            // 标准化角度到 [0,180) 范围
            angle = fmod(angle, 180);

            if ((angle >= 0 && angle < 22.5) || (angle >= 157.5 && angle < 180))
            {
                mag1 = gradientMagnitude.at<float>(i, j - 1);
                mag2 = gradientMagnitude.at<float>(i, j + 1);
            }
            else if (angle >= 22.5 && angle < 67.5)
            {
                mag1 = gradientMagnitude.at<float>(i - 1, j + 1);
                mag2 = gradientMagnitude.at<float>(i + 1, j - 1);
            }
            else if (angle >= 67.5 && angle < 112.5)
            {
                mag1 = gradientMagnitude.at<float>(i - 1, j);
                mag2 = gradientMagnitude.at<float>(i + 1, j);
            }
            else if (angle >= 112.5 && angle < 157.5)
            {
                mag1 = gradientMagnitude.at<float>(i - 1, j - 1);
                mag2 = gradientMagnitude.at<float>(i + 1, j + 1);
            }

            if (mag >= mag1 && mag >= mag2)
            {
                suppressed.at<float>(i, j) = mag;
            }
            // 只保留最大值
        }
    }
}

// 双阈值划分和边缘跟踪
void hysteresisThreshold(const Mat& suppressed, Mat& edgeImage, double lowThreshold, double highThreshold)
{
    edgeImage = Mat::zeros(suppressed.size(), CV_8U);
    stack<Point> edgePoints;

    // 标记强边缘
    for (int i = 1; i < suppressed.rows - 1; ++i)
    {
        for (int j = 1; j < suppressed.cols - 1; ++j)
        {
            float value = suppressed.at<float>(i, j);
            if (value >= highThreshold)
            {
                edgeImage.at<uchar>(i, j) = 255;
                edgePoints.push(Point(j, i));
                // 栈先进后出
            }
        }
    }

    // 边缘跟踪
    while (!edgePoints.empty())
    {
        Point p = edgePoints.top();
        edgePoints.pop();

        for (int dx = -1; dx <= 1; ++dx)
        {
            for (int dy = -1; dy <= 1; ++dy)
            {
                int x = p.x + dx;
                int y = p.y + dy;
                if (x >= 0 && x < edgeImage.cols && y >= 0 && y < edgeImage.rows)
                {
                    if (edgeImage.at<uchar>(y, x) == 0 && suppressed.at<float>(y, x) >= lowThreshold)
                    {
                        edgeImage.at<uchar>(y, x) = 255;
                        edgePoints.push(Point(x, y));
                    }
                    // 在强边缘点邻接的像素点搜索,若未被标记为边缘点且大于低阈值,则标记为边缘点
                }
            }
        }
    }
}

int main()
{
    VideoCapture mp4Captured("待处理的视频文件的位置");
    if (!mp4Captured.isOpened())
    {
        cerr << "ERROR: cannot open video file" << endl;
        return -1;
    }

    // 显示结果
    while (true)
    {
        Mat inputImage;
        if(!mp4Captured.read(inputImage))
        {
            cerr << "ERROR: cannot read frame from video file" << endl;
        }

        Mat grayImage;
        cvtColor(inputImage, grayImage, COLOR_BGR2GRAY);

        // 高斯滤波
        cv::Mat gaussianImage;
        GaussianBlur(grayImage, gaussianImage, Size(5, 5), 1.4, 1.4, BORDER_DEFAULT);

        // Sobel算子求梯度
        cv::Mat gradX, gradY, gradImage;
        Sobel(gaussianImage, gradX, CV_32F, 1, 0, 3, 1, 0, BORDER_DEFAULT);
        Sobel(gaussianImage, gradY, CV_32F, 0, 1, 3, 1, 0, BORDER_DEFAULT);

        // 计算梯度幅值和方向
        cv::Mat gradientMagnitude, gradientDirection;
        magnitude(gradX, gradY, gradientMagnitude);
        phase(gradX, gradY, gradientDirection, true);

        // 转换梯度图像以显示
        convertScaleAbs(gradX, gradX);
        convertScaleAbs(gradY, gradY);
        addWeighted(gradX, 0.5, gradY, 0.5, 0, gradImage);

        // 非极大值抑制
        cv::Mat nonMaxSuppressed;
        nonMaxSuppression(gradientMagnitude, gradientDirection, nonMaxSuppressed);

        // 双阈值划分和边缘跟踪
        cv::Mat edgeImage;
        double highThreshold = 150;
        double lowThreshold = 50;
        hysteresisThreshold(nonMaxSuppressed, edgeImage, lowThreshold, highThreshold);

        // Canny函数
        cv::Mat cannyImage;
        Canny(inputImage, cannyImage, lowThreshold, highThreshold, 3, false);

        imshow("原图", inputImage);
        imshow("灰度化", grayImage);
        imshow("高斯滤波", gaussianImage);
        imshow("非极大值抑制", nonMaxSuppressed);
        imshow("梯度", gradImage);
        imshow("边缘检测", edgeImage);
        imshow("使用Canny算法进行边缘检测", cannyImage);

        char key = cv::waitKey(30);
        if (key == 27)
            break;
    }

    return 0;
}

原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值