不多说什么了,直接上代码吧:
#include <iostream>
#include <stdio.h>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/imgproc.hpp"
#include"opencv2/flann.hpp"
#include"opencv2/xfeatures2d.hpp"
#include"opencv2/ml.hpp"
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
using namespace cv::ml;
int main()
{
Mat a = imread("box.png", IMREAD_GRAYSCALE); //读取灰度图像
Mat b = imread("box_in_scene.png", IMREAD_GRAYSCALE);
Ptr<SURF> surf; //创建方式和2中的不一样
surf = SURF::create(800);
BFMatcher matcher;
Mat c, d;
vector<KeyPoint>key1, key2;
vector<DMatch> matches;
surf->detectAndCompute(a, Mat(), key1, c);
surf->detectAndCompute(b, Mat(), key2, d);
matcher.match(c, d, matches); //匹配
sort(matches.begin(), matches.end()); //筛选匹配点
vector< DMatch > good_matches;
int ptsPairs = std::min(50, (int)(matches.size() * 0.15));
cout << ptsPairs << endl;
for (int i = 0; i < ptsPairs; i++)
{
good_matches.push_back(matches[i]);
}
Mat outimg;
drawMatches(a, key1, b, key2, good_matches, outimg, Scalar::all(-1), Scalar::all(-1),vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); //绘制匹配点
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (size_t i = 0; i < good_matches.size(); i++)
{
obj.push_back(key1[good_matches[i].queryIdx].pt);
scene.push_back(key2[good_matches[i].trainIdx].pt);
}
std::vector<Point2f> obj_corners(4);
obj_corners[0] = Point(0, 0);
obj_corners[1] = Point(a.cols, 0);
obj_corners[2] = Point(a.cols, a.rows);
obj_corners[3] = Point(0, a.rows);
std::vector<Point2f> scene_corners(4);
Mat H = findHomography(obj, scene, RANSAC); //寻找匹配的图像
perspectiveTransform(obj_corners, scene_corners, H);
line(outimg,scene_corners[0] + Point2f((float)a.cols, 0), scene_corners[1] + Point2f((float)a.cols, 0),Scalar(0, 255, 0), 2, LINE_AA); //绘制
line(outimg,scene_corners[1] + Point2f((float)a.cols, 0), scene_corners[2] + Point2f((float)a.cols, 0),Scalar(0, 255, 0), 2, LINE_AA);
line(outimg,scene_corners[2] + Point2f((float)a.cols, 0), scene_corners[3] + Point2f((float)a.cols, 0),Scalar(0, 255, 0), 2, LINE_AA);
line(outimg,scene_corners[3] + Point2f((float)a.cols, 0), scene_corners[0] + Point2f((float)a.cols, 0),Scalar(0, 255, 0), 2, LINE_AA);
imshow("aaaa",outimg);
cvWaitKey(0);
}
运行图:
//-------------读取模板------------
cv::Mat img_object = imread("/storage/emulated/0/ApplePearFace/imgTemp.jpg");
//-------------图像处理---------
cv::Mat img_scene(yimage);
/*
// 检测surf特征点
int minHessian = 400;
OrbDescriptorExtractor detector(minHessian);
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2);
//-- Step 2: Calculate descriptors (feature vectors)
OrbDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute(img_1, keypoints_1, descriptors_1);
extractor.compute(img_2, keypoints_2, descriptors_2);
//-- Step 3: Matching descriptor vectors with a brute force matcher
BFMatcher matcher(NORM_L2);
std::vector< DMatch > matches;
matcher.match(descriptors_1, descriptors_2, matches);
//-- Draw matches
Mat img_matches;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_matches);*/
// 读取数据
//cv::Mat img_object = cv::imread("doll01.jpg");
//cv::Mat img_scene = cv::imread("doll012.jpg");
if (!img_object.data || !img_scene.data) {
cout << "Error reading images." << endl;
return 0;
}
// 构建特征检测器和描述子提取器
cv::Ptr<cv::FeatureDetector> detector = cv::FeatureDetector::create("ORB");
cv::Ptr<cv::DescriptorExtractor> descriptor = cv::DescriptorExtractor::create("ORB");
// 检测特征点
vector<cv::KeyPoint> kp_object, kp_scene;
detector->detect(img_object, kp_object);
detector->detect(img_scene, kp_scene);
// 计算描述子
cv::Mat desp_object, desp_scene;
descriptor->compute(img_object, kp_object, desp_object);
descriptor->compute(img_scene, kp_scene, desp_scene);
/*
if (desp_object.type() != CV_32F) {
desp_object.convertTo(desp_object, CV_32F);
}
if (desp_scene.type() != CV_32F) {
desp_scene.convertTo(desp_scene, CV_32F);
}
*/
// 匹配描述子
vector<cv::DMatch> matches;
cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20, 10, 2));
matcher.match(desp_object, desp_scene, matches);
//cout << "Find total " << matches.size() << " matches." << endl;
// 筛选匹配
//double min_dist = 100000;
//for (int i = 0; i < matches.size(); i++) {
// float a = matches[i].distance;
// if (a < min_dist) {
// min_dist = matches[i].distance;
// }
//}
//vector<cv::DMatch> good_matches;
//for (int i = 0; i < matches.size(); i++) {
//
// if (matches[i].distance < 3 * min_dist) {
// good_matches.push_back(matches[i]);
// }
//}
// 显示匹配
//cout << "Good matches=" << matches.size() << endl;
cv::Mat img_matches;
cv::drawMatches(img_object, kp_object, img_scene, kp_scene, matches, img_matches);
// 定位目标
cv::vector<cv::Point2f> obj_points;
cv::vector<cv::Point2f> scene;
for (int i = 0; i < matches.size(); i++) {
obj_points.push_back(kp_object[matches[i].queryIdx].pt);
scene.push_back(kp_scene[matches[i].trainIdx].pt);
}
cv::Mat H = cv::findHomography(obj_points, scene, CV_RANSAC);
cv::vector<cv::Point2f> obj_corners(4);
cv::vector<cv::Point2f> scene_corners(4);
obj_corners[0] = cv::Point(0, 0);
obj_corners[1] = cv::Point(img_object.cols, 0);
obj_corners[2] = cv::Point(img_object.cols, img_object.rows);
obj_corners[3] = cv::Point(0, img_object.rows);
cv::perspectiveTransform(obj_corners, scene_corners, H);
cv::line(img_matches, scene_corners[0] + cv::Point2f(img_object.cols, 0), scene_corners[1] + cv::Point2f(img_object.cols, 0), cv::Scalar(0, 255, 0), 4);
cv::line(img_matches, scene_corners[1] + cv::Point2f(img_object.cols, 0), scene_corners[2] + cv::Point2f(img_object.cols, 0), cv::Scalar(0, 255, 0), 4);
cv::line(img_matches, scene_corners[2] + cv::Point2f(img_object.cols, 0), scene_corners[3] + cv::Point2f(img_object.cols, 0), cv::Scalar(0, 255, 0), 4);
cv::line(img_matches, scene_corners[3] + cv::Point2f(img_object.cols, 0), scene_corners[0] + cv::Point2f(img_object.cols, 0), cv::Scalar(0, 255, 0), 4);
cv::Mat dstSize;
cv::resize(img_matches, dstSize, Size(2 * h, w));