深度强化学习——AlphaGo实例讲解(5)

现在我们来分析AlphaGo这个实例,看看深度强化学习是怎么样用来玩围棋游戏的

AlphaGo的主要设计思路:

首先是训练,要分3步来做:

1、behavior cloning:这是一种模仿学习,alphaGo模仿人类玩家,从16W局人类的游戏当中学习出一个策略网络。behavior cloning是一种监督学习,其实就是多分类,不是强化学习,AlphaGo使用behavior cloning来初步学习策略网络

2、使用强化学习来进一步训练这个策略网络,具体是用策略梯度算法,AlphaGo让策略网络做自我博弈,拿胜负结果来训练策略网络,强化学习可以让策略网络变得更强

3、训练一个价值网络,AlphaGo用的不是actor-critic算法,actor-critic算法要同时训练价值网络和策略网络,AlphaGo是先训练策略网络,然后用策略网络来训练价值网络

当AlphaGo和李世石下棋的时候用的不是策略网络,而是蒙特卡洛树搜索,搜索的时候要用到价值网络和策略网络,他们可以指导搜索,排除掉没有必要的搜索动作

 策略网络的架构&如何训练策略网络:

17的含义:把当前黑色棋子的位置用1个矩阵来表示,把之前7步的黑色棋子的位置用另外7个矩阵来表示,为了表示黑色棋子,需要用到8个矩阵,同样,为了表示白色棋子还需要8个矩阵,前16个矩阵是对黑白棋子位置的描述,第17个矩阵如果是全1的话,就表示现在该下黑色棋子了,如果是全0的话,就表示现在该下白色棋子了

8这个数字是个超参数,是做使用试出来的

此时状态就可以用这个19*19*17的tensor来表示了

如何设计?

用一个tensor来表示AlphaGo的状态,把tensor作为状态网络的输入

最后使用1个或者多个全连接层输出一个361维的向量

输出层的激活函数必须使用softmax,因为输出的是一个概率分布

围棋最多有361个动作,所以神经网络的输出应该是一个361维的向量,输出向量的每一个元素对应的是一个放棋子的位置,也就是动作,向量的元素都是每个动作的概率值

由于从头训练神经网络耗时太长,所以先直接从人类你记录的比赛当中初步学习 

behavior cloning只需要让策略网络去模仿人的动作就可以了,不需要奖励,也不是强化学习,模仿学习和强化学习的区别就是有无奖励

使用tensor来表示棋盘上的格局:

把动作at*=281做one-hot encode,变成了一个361维的向量,这个向量是全0的,只有第281个元素是1,把这个one-hot encode记作向量yt

使用CrossEntropy来衡量人类玩家的动作yt与策略网络的预测pt之间的差异,作为损失函数

其实你仔细想一下behavior cloning就是多分类,棋盘上有361个位置,其实就是有361个类别,策略网络的输出就是每一个类别的概率,人类玩家的动作是361当中的一个,把人类玩家的动作看作是ground-truth真实的标签,其实这个问题跟图片分类完全一样,图片分类有汽车、猫、狗的类别,而这里的类别是361个位置,图片分类中的target是猫、狗这样的标签,这里的target是人类玩家放棋子的位置,所以behavior cloning就是多分类,有361个类

behavior cloning最大的缺陷是什么?

》当前状态st没有出现在训练数据当中(策略网络没有见过当前状态st)

在强化学习之后,即使当前棋盘上的状态很奇怪,策略网络也能应对自如

具体怎么样用强化学习来训练策略网络呢?

》AlphaGo让两个策略网络来做博弈,一个叫做Player另一个叫做Opponent

每下完一句围棋,把胜负作为奖励,靠奖励来更新Player的参数,Playe没下一步棋子,Opponent也要跟着走一步,相当于随机状态转移,Opponent也是用策略网络来控制的,但是Opponent的参数不用学习

那么怎么样定义奖励呢?

前面的奖励都是0,只有最后一个奖励要么是-1要么是1

如何直观理解?

》agent赢了则每一步都是好棋,agent输了则每一步都是臭棋,我们无法区分一句博弈里哪一步是好棋哪一步是臭棋,我们只能把每一步都同等对待,拿最终结果说话,给所有动作都有相同的回报

玩完一句游戏我们就知道ut的值了,要么是+1要么是-1,我们还可以指定策略网络Π的参数θ=θt,就可以计算近似的策略梯度了

这里的ut不是前面的ut,而是每个时刻的rt,所以需要连加

现在还有一个小问题就是策略网络有可能会犯错误而导致输掉比赛,也就是模型不稳定,比策略网络更好的办法是蒙特卡洛树搜索

为了做蒙特卡洛树搜索,还需要一个价值网络,这里的价值网络和之前的不太一样,这里的价值网络是对状态价值函数V的近似而不是对Q的近似

最新的AlphaGo Zero是让两个神经网络共享一个卷积层,这是因为这两个网络都需要把状态是19*19*17的tensor作为输入,底层的卷积从输入中提取特征,而这些特征对于两个神经网络都适用,所以呢让两个神经网络共享一个卷积层是很合理的

价值网络的输出是一个标量,是对当前状态s的打分,表示当前的胜算有多大

策略网络和价值网络是分别训练的,而不是同时训练的,AlphaGo先训练策略网络Π,然后再训练价值网络V,价值网络V是靠策略网络Π帮助训练的,而actor-critic算法是同时训练两个网络

价值网络的学习就像是一个回归问题一样,把真实观测到的ut作为target,价值网络的预测是v(st,w)

那么哪里体现了策略网络辅助价值网络了呢?

训练价值网络V的时候在第一步要用策略网络做自我博弈

回顾一下:

1、首先使用模仿学习,根据人的棋谱来初步训练策略网络

2、使用策略梯度算法,来进一步训练策略网络

3、结束训练策略网络之后,再单独训练一个价值网络V

至此AlphaGo的训练结束了

那么实战的时候, AlphaGo使用的是策略网络还是价值网络呢?

》都不是,AlphaGo实战的时候使用的是蒙特卡洛树搜索。蒙特卡洛树搜索不需要训练,可以直接拿来跟人下棋,之前学习的两个神经网络就是为了帮助蒙特卡洛树搜索

人类下棋的时候要往后算好几步,这样赢得可能性更大,这就是为啥AI会向前看,而不仅仅是用策略函数来算出一个动作,比如你当前玩游戏可能会获得满足,但是在未来可能会没有通过考试,最终得不偿失,虽然这个动作在当下是最优的,但是在未来却未必如此

搜索的主要思想:

1、选择一个动作a,当然要根据动作的好坏程度,以不同的概率去选择,可行的动作很多不可能使用枚举算法,所以要排除不好的动作,只去搜索好的动作,使用的就是策略网络,来去排除不好的动作(概率值比较低的)

2、让策略网络做自我博弈,直到游戏结束,看这次是胜还是负

3、然后根据是胜还是复和价值函数这两个因素来给a打分

4、重复这个过程很多次,所以每个动作都有很多个分数

5、可以看一下哪个动作的总分最高,这个分数就能反映出动作的好坏,AlphaGo就会执行总分最高的动作

蒙特卡洛树搜索具体是这样做的:

分数由两部分组成:

1、Q(a),他是搜索计算出来的分数,叫做动作价值,其实在Go的例子中Q(a)就是一张表,记录了361个动作的分数

2、另一个是策略网络Π给a打的分数除以(1+N(a)) ,这里的N是动作a被选中的次数,动作越好策略网络Π给a打的分数就会越高,这一项就会越大,但是如果动作a已经被探索好多次了,分母N(a)就会变大,降低动作a的分数,这样可以避免探索同样的动作太多次,η是超参数需要手动去调整

以下过程都是Go在模拟

1、一开始所有的Q(a)都=0,一开始的时候完全由策略函数Π来决定探索哪个动作,做了很多次搜索之后N(a)的值会变大,使得第二项变得很小,这样策略函数Π就变得无关紧要了,这时候探索哪个动作完全由Q(a)来决定

2、

这里的对手相当于环境,这里的策略是状态转移函数,对手的动作会产生新的状态st+1,虽然我不知道对手怎么想的,即我不知道状态转移函数,但是可以使用Π来近似p

3、评估

从状态st+1开始,后面就让策略网络来做自我博弈,双方都由策略网络控制,双方挨个放棋子,一直到分出胜负为止,此时得到奖励rt,赢了+1,输了-1,这个奖励rt可以用来评价状态st+1的好坏

除了用奖励来评价st+1,Go还用V来评价,价值网络V是之前训练出来的,直接把状态st+1输入进来

由于这个模拟会重复很多次,所以每个状态下都会有很多记录,每个动作at都会有很多个这样的子节点,所以at就会对应很多条记录,把at下面所有的记录做一个平均,作为at新的价值Q(at) 

解释以下Go算这个Q的目的,蒙特卡洛树搜索的第一步selection的时候要选出最好的动作来搜索,做选择的时候就要用到这个Q值,Q值就是所有记录的V值的平均

假设已经做了成千上万次搜索了,这时候哪个动作好已经很明显了,限制AlphaGo可以做真正的决策了

一个动作a的Q值和Π越大,N(a)就越大,所以N(a)可以反应动作的好坏,AlphaGo的决策很简单,就是选中N值最大的动作,执行这个动作

AlphaGo每走一步,都要进行成千上万次的模拟,每次模拟都会重复以上四步,通过成千上万次的模拟AlphaGo就有了每个动作的Q分数和N分数,AlphaGo会选中N值最大的动作,执行这个动作,真正地下一步棋,为了走这一步棋,AlphaGo已经进行了成千上万次的模拟

当李世石走完一步,再次轮到AlphaGo的时候,他会再次重来一次蒙特卡洛树搜索,这次会重新把Q和N初始化为0,然后做成千上万次模拟

简单小结一下:

训练价值网络就是在做回归

虽然可以使用策略网络来下棋,但是更好的办法是蒙特卡洛树搜索

老版本是模仿人类玩家,新版本是模仿蒙特卡洛树搜索

如果是在虚拟环境的话,behavior-cloning可能是有害的,但是在物理世界当中,还是很有必要的,因为这样可以最大化地减少损失

新版本的AlphaGo是如何训练策略网络的?

1、观测到状态st

2、让策略网络做一个预测,输出每个动作的概率值,把策略网络的输出记作向量p,他是一个362维的向量
3、做蒙特卡洛树搜索,做很多次模拟,会得到每一个动作被选中的次数Na,对这361个数Na做归一化,让他们变成概率值,记作n

4、我们希望策略网络做出的决策p接近搜索做出的决策n,即减小L

5、使用梯度下降减少Loss

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度强化学习在各个领域都有广泛的应用,以下是一些常见的实例: 1. 游戏智能:深度强化学习在游戏智能领域中应用广泛,例如 AlphaGo、AlphaZero、OpenAI Five 等。这些模型通过学习最优的决策策略,在围棋、象棋、扑克、星际争霸等游戏中击败了人类顶尖选手。 2. 机器人控制:深度强化学习可以帮助机器人学习如何在复杂环境中移动、抓取、操作等,例如 OpenAI 的 Dactyl 机器人和 Boston Dynamics 的 Atlas 机器人。这些机器人可以通过深度强化学习学习到最优的控制策略,以完成各种任务。 3. 自动驾驶:深度强化学习可以帮助自动驾驶汽车学习如何在复杂的交通环境中安全地行驶。例如,DeepDrive 是一个基于深度强化学习的自动驾驶系统,它可以在虚拟的城市环境中学习到最优的驾驶策略。 4. 语音识别:深度强化学习可以帮助语音识别系统学习如何更准确地识别语音信号。例如,Google 的 WaveNet 模型使用深度强化学习学习如何生成更自然的语音合成。 5. 金融交易:深度强化学习可以帮助金融交易系统学习如何制定最优的交易策略。例如,DeepMind 和大华银行合作开发了一个基于深度强化学习的股票交易系统,可以在股票市场上实现较好的收益率。 总之,深度强化学习在各个领域都有广泛的应用,可以帮助机器学习如何在复杂环境中做出最优的决策策略。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值