期货日内交易小经验-开仓篇

1、开仓必带止损,止损过大不开仓

止损是风险控制最重要的手段之一,开仓带止损应毫无条件地做到。

如果开仓止损过大,已经超出我们的心理承受范围,那么不建议开仓。

PVC2209 - 1分钟图表

2、顺大势,逆小势

顺大势,指顺应日线的势,更指顺应日内的趋势。

假设日线上一日收的是中大阳线,次日一般技术上也看多。

但是次日日内价格走势表现是空强多弱的价格波动,那么应遵循日内的趋势运动。

逆小势,主要与日内的大势(主要趋势和主要动能)对比,从次级别的趋势和弱动能入场。


塑化链指数 - 1分钟图表

 3、短时间涨跌幅过大,谨慎开仓

价格短时间内,涨幅或跌幅过大,容易出现回调或反弹。

遇到跌幅或涨幅过大的行情,不要去盲目追涨杀跌。

辨识价格短时间上涨或下跌幅度过大,可以通过价格运动的角度和速率判断,

价格运动的角度越大,速率越快,持续性就越短。

也可以通过价格与60均线的偏离度辨识价格的超买和

电子时钟设计是一个基于单片机的综合性电子项目,涵盖硬件设计、软件设计、模块代码编写以及运行展示等多个环节。以下是该项目的详细分析与知识点总结: 电子时钟设计是一项课程设计任务,目标是开发一个功能完善的电子时钟系统。该系统以单片机为核心控制器,具备时间显示、设置和控制等功能,旨在满足用户的常使用需求。 硬件设计的核心是系统方案原理图,它明确了系统的整体架构以及各组件之间的连接关系。外设设计方面,键盘输入模块和数码管显示模块是关键部分。键盘输入模块的工作原理包括键盘扫描、按键识别以及状态机控制等环节;数码管显示模块的工作原理则涉及数码管的驱动、显示控制和状态机控制等内容。 软件设计的核心是项目软件系统总架构图,它详细介绍了系统的软件框架,涵盖单片机编程、键盘输入模块流程图与代码、数码管显示模块流程图与代码等方面。顺序图则展示了软件的运行流程,包括系统初始化、键盘输入处理、显示控制和状态机控制等环节。 模块代码是系统各模块功能的具体实现。例如,键盘输入模块的代码实现了键盘扫描、按键识别和状态机控制等功能;数码管显示模块的代码实现了数码管驱动、显示控制和状态机控制等功能。 运行展示是项目的最终成果呈现环节,展示了电子时钟的实际运行效果,包括时间的准确显示、便捷的设置操作以及稳定的控制功能等。 单片机原理:掌握单片机的架构、指令系统和编程方法。 Proteus仿真:熟悉Proteus仿真原理、仿真环境及仿真操作。 C语言编程:理解C语言的语法、数据类型、控制结构、函数和数组等基础知识。 电子时钟设计:了解电子时钟的工作原理、设计方法和实现技术。 硬件设计:掌握硬件设计的基本原理、方法和工具。 软件设计:熟悉软件设计的基本原理、方法和工具。 模块代码实现:掌握模块代码的设计、编程和调试技巧。 电子时钟设计项目融合了硬件与软件设计,通过模块代码实现功能,并通过运行展示呈现最终效果。掌握
### 实现期货日内交易策略 对于期货日内交易而言,Python 提供了多种库来支持这一过程。其中 Zipline 是一个非常适合用于开发和回测交易策略的框架[^1]。 为了构建一个简单的基于移动平均线交叉的交易模型,可以采用如下方式: #### 导入必要的模块并设置环境变量 ```python import pandas as pd from datetime import date import matplotlib.pyplot as plt import numpy as np from zipline.api import order_target_percent, symbol, set_benchmark from zipline.algorithm import TradingAlgorithm ``` #### 定义初始化函数 在此部分设定基准指数以及要操作的具体合约。 ```python def initialize(context): context.asset = symbol('RB') # 假设 RB 表示螺纹钢主力连续合约 set_benchmark(symbol('IF')) # 设定沪深300股指作为业绩比较标准 context.short_window = 20 # 较短周期均线窗口长度 context.long_window = 40 # 较长周期均线窗口长度 ``` #### 处理每条新数据到来时的动作 当新的市场价格信息到达时触发此方法,在这里判断是否满足开仓条件或者平仓信号。 ```python def handle_data(context, data): short_mavg = data.history( context.asset, 'price', bar_count=context.short_window, frequency="1d" ).mean() long_mavg = data.history( context.asset, 'price', bar_count=context.long_window, frequency="1d" ).mean() current_position = context.portfolio.positions[context.asset].amount if short_mavg > long_mavg and current_position == 0: order_target_percent(context.asset, 1.0) # 开多单 elif short_mavg < long_mavg and current_position != 0: order_target_percent(context.asset, 0.0) # 平掉所有仓位 ``` 上述代码片段展示了如何利用 `zipline` 来创建一个基本的趋势跟踪型日内交易系统。需要注意的是这只是一个非常基础的例子,并未考虑诸如手续费、滑点等因素的影响;而且实际应用中还需要加入更多风控措施以保护账户安全。 此外,如果希望绘制带有技术指标(如唐奇安通道)的价格图表,则可借助于 `mplfinance` 库完成可视化工作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值