语义分割(mmlab实战营第五课)

文章探讨了图像分割的不同层次,包括语义分割关注物体类别的区域划分,实例分割侧重单独实体,全景分割则同时处理前景与背景。颜色分割借助图像处理但需后续识别,而逐像素分类利用现有模型但效率较低。全卷积网络作为解决方案,优化了卷积和全连接层,提高了处理效率。
摘要由CSDN通过智能技术生成

一、语义分割:将图像按照物体的类别分割成不同的区域, 对每个像素进行分类 。

实例分割:分割不同的实体,仅考虑前景物体。

全景分割:背景仅考虑类别,前景需要区分实体。

二、

按颜色分割:基于图像处理方法 按照颜色分割 ,需要额外手段确定物体类别,最终性能依赖初步分割结果 。 逐像素分类:优势:可以充分利用已有的图像分类模型,问题:效率低下,重叠区域重复计算卷积

全连接层的卷积化

全卷积网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值