使用R语言中的ranger包构建随机森林模型

95 篇文章 ¥59.90 ¥99.00
本文介绍了如何在R语言中利用ranger包构建随机森林模型。首先安装并加载ranger包,然后准备数据集,接着用ranger函数创建模型,指定参数如num.trees和mtry。模型建立后,查看特征重要性和误差率,最后使用模型对新数据进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言中的ranger包构建随机森林模型

随机森林(Random Forest)是一种强大的机器学习算法,常用于分类和回归问题。它结合了多个决策树的预测结果,通过投票或取平均值的方式得出最终的预测结果。在R语言中,我们可以使用ranger包中的ranger函数来构建随机森林模型。

首先,我们需要安装并加载ranger包。可以使用以下命令完成:

install.packages("ranger")  # 安装ranger包
library(ranger)  # 加载ranger包

接下来,我们准备数据集用于构建随机森林模型。假设我们有一个包含特征和目标变量的数据框(data frame),其中特征存储在X中,目标变量存储在y中。确保数据集已经加载到R环境中。

# 假设特征存储在X中,目标变量存储在y中
# 在这里加载你的数据集

# 创建随机森林对象
rf_model <- ranger(formula = y ~ ., data = data.frame(X, y),
                   num.trees = 100,  # 决策树的数量
                   mtry = 3,  # 每个决策树节点考虑的特征数量
                   importance = "impurity")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值