体数据由体素组成。 体素是基本体积元素,也可以理解为三维空间内的具有排列和颜色的点或一小块区域,这也是为什么可以保持高达六个标量参数的原因。
通常体素属于固定网格,因此体数据可以作为表格储存。在这种情况下,运行可以被认为是多维数组,体数据可以被当作为本地储存的*.csv文件。然而,更常见的是,数据集被分成若干片,并且每个片被存储为位图图像。由于可以应用于图像的复杂压缩算法,明显减小模型尺寸。
体数据可视化算法
可视化体数据包括四种主要算法。以下将讨论各种算法和技术的特点及目前存在的问题。
1.基于切片方法
最直接的解决方案,这意味着给予每个体数据切片滚动交互单独可视化机会。
此技术的优点在于操作简单和复杂计算少。而它的缺点是可视化人员需要想象重建整个对象结构。因此,基于切片方法不是分析极其复杂和不明确结构的最佳选择。但是此方法非常适合可视化已知对象的内部情况,比如,人体内部结构。这也是为什么此方法在医疗行业中被广泛应用的原因。如,最常用于MRI和CT。 值得提醒的是, 一般的CT和MRI研究在一个维度中的分辨率比较低,这导致利用具有更先进技术数据集的一些困难。

2.其他技术仿真
这种方法很适合于熟悉一定技术的专家可视化分析应用。比如,应用于医疗和地震行业的新技术开发,专家们可以从旧技术解决方案平稳过渡到现代化技术。此方法不常被采纳的原因如下:首先,它需要使用非常详细的体数据集,而其它主要信息可能在通过模仿另一种技术时而丢失或损坏。因此,在将新技术集成到专家工作流程中的过程中,可视化的普及将逐渐减少。其次,这种可视化类型的开发需要大量的时间才能接近可视化初始图像,在转换后部分图像将被丢弃使用。另外一个问题是需要有一定技术经验的人才能正确解释结果。
3. 体渲染

本文介绍了体数据可视化的概念和主要算法,包括基于切片、其他技术仿真、体渲染和直接体绘制。其中,直接体绘制是目前最强大的方法,但需要高性能硬件。Arction Ltd的LightningChart在3D渲染方面表现出色。
最低0.47元/天 解锁文章
1121

被折叠的 条评论
为什么被折叠?



