caffe随记(五)---/build/tools/caffe.bin工具简析

Caffe命令详解

1、怎么用这个命令

 

在caffe根目录下输入如下命令:

 ./build/tools/caffe.bin, 得到如下显示


usage:caffe<command><args>

# 这个是告诉你使用格式, caffe 后接上 一个command命令,后面再接其他参数

 

commands: #你能选择的命令有一下这么几种

train #训练或者微调一个模型

test  #对一个模型打分

device—query #显示GPU诊断信息

time #评估模型执行时间

 

Flags form tools/caffe.cpp   #其他一些参数的总览

-gpu         (可选;给定时运行GPU模式,用’ , ’分隔开不同的gpu,

                     ‘-gpu all’表示运行在所有可用的gpu设备上,此时有效训练批量大小就是gpu设备数乘以batch_size)

-iterations (循环迭代次数,默认为50)

-level          (可选;定义网络水平,也是NetState中的一个,但我也还不清楚这个的作用)

-model        (指定模型定义文本文件名,xxx.prototxt)

-phase        (可选;网络是处于TEST还是TRAIN阶段,当你使用command中time命令时,再指定phase就可以选择计算TEST或者TRAIN的耗时)

-sighup_effect (可选;当收到SIGHUP信号时要采取的动作,可选项:snapshot、stop、none,默认为snapshot,即打印快照)

-sigint_effect (可选;当收到当收到SIGINT信号时要采取的动作,可选项同上,默认stop)

-snapshot (可选,恢复训练时指定上次中止的快照,就是比如训练到一般按Ctrl+C终止训练(Linux中这个Ctrl+C不是copy,而是终止当前操作),就会得到一个solverstate                        文件,下次恢复训练时就可以指定这个)

-solver       ( 指定sovler.prototxt文件,在train的时候需要这个参数)

-stage        (可选;也是NetState中的一个,但我也还不清楚这个的作用)

-weights    ( 指定用于微调的预训练权值,也即 训练后得到的**.caffemodel文件,不可与snapshot同时出现)

2、caffe.cpp源文件

注:这个文件的内容有些多,我也只是选择性的阅读并注释了部分。


#ifdef WITH_PYTHON_LAYER
#include "boost/python.hpp"
namespace bp = boost::python;
#endif

#include <gflags/gflags.h>
#include <glog/logging.h>

#include <cstring>
#include <map>
#include <string>
#include <vector>

#include "boost/algorithm/string.hpp"
#include "caffe/caffe.hpp"
#include "caffe/util/signal_handler.h"

using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::Solver;
using caffe::shared_ptr;
using caffe::string;
using caffe::Timer;
using caffe::vector;
using std::ostringstream;

DEFINE_string(gpu, "",
    "Optional; run in GPU mode on given device IDs separated by ','."
    "Use '-gpu all' to run on all available GPUs. The effective training "
    "batch size is multiplied by the number of devices.");
DEFINE_string(solver, "",
    "The solver definition protocol buffer text file.");
DEFINE_string(model, "",
    "The model definition protocol buffer text 
<think>根据用户问题描述,用户在使用交叉编译工具链编译项目时遇到链接错误,提示libprotobuf.so存在语法错误,导致生成libCPL.so失败。需要解决该编译错误。 分析问题: 1. 错误现象:ld链接阶段失败,提示libprotobuf.so语法错误。 2. 环境:交叉编译环境。 可能原因: 1. 交叉编译工具链与目标平台不匹配。 2. libprotobuf.so库文件损坏或版本不兼容。 3. 编译时引用了错误的库路径(可能使用了主机系统的库而不是交叉编译的库)。 解决步骤: 第一步:确认交叉编译工具链的兼容性 检查交叉编译工具链是否针对正确的目标平台(如ARM、MIPS等)。确保工具链中的链接器(ld)能够处理目标平台的二进制格式。 第二步:检查libprotobuf.so的编译环境 确认libprotobuf.so库是否是用相同的交叉编译工具链编译的。如果使用了主机系统的库(例如x86架构的库),而在交叉编译ARM平台时链接,则会导致格式不匹配。 第三步:检查库文件路径 在交叉编译时,确保链接器查找到的是交叉编译的libprotobuf.so,而不是主机系统的库。可以通过以下方式检查: - 查看编译命令中的链接选项(-L参数)是否指向了正确的交叉编译库路径。 - 使用`readelf -h libprotobuf.so`查看库的机器类型(Machine字段),确认是否与目标平台一致。 第四步:重新编译protobuf库 如果发现libprotobuf.so不是用交叉编译工具链编译的,则需要重新编译protobuf库: 1. 下载protobuf源码。 2. 配置交叉编译环境(设置交叉编译器、目标平台等)。 3. 编译并安装到交叉编译库目录。 示例步骤(以ARM平台为例): ```bash # 设置交叉编译工具链路径 export CC=arm-linux-gnueabihf-gcc export CXX=arm-linux-gnueabihf-g++ # 进入protobuf源码目录 ./configure --host=arm-linux --prefix=/path/to/arm-protobuf make make install ``` 然后将生成的库文件(在/path/to/arm-protobuf/lib下)链接到项目中。 第步:检查项目编译配置 确保项目在编译时正确指定了protobuf的头文件和库路径。例如,在Makefile中: ``` CFLAGS += -I/path/to/arm-protobuf/include LDFLAGS += -L/path/to/arm-protobuf/lib -lprotobuf ``` 第六步:清理并重新编译项目 在确保库路径正确后,执行清理并重新编译: ```bash make clean make ``` 第七步:如果问题仍然存在,检查protobuf版本是否与项目要求一致。如果项目依赖特定版本的protobuf,则需要使用该版本重新交叉编译。 注意事项: 1. 交叉编译时,所有依赖的库都需要使用相同的交叉编译工具链重新编译。 2. 使用`ldd`命令检查生成的可执行文件或库依赖的so文件路径是否正确(注意:在主机上运行ldd检查交叉编译的目标文件可能不准确,建议在目标平台上运行)。 引用参考: 用户提供的引用[2]中提到,在编译Goturn项目时,通过将编译生成的caffe.pb.h和caffe.pb.cc放入指定目录解决了问题。这启示我们,可能是protobuf生成的文件没有正确放置导致链接错误。因此,确保项目中使用的protobuf生成文件(如.pb.cc和.pb.h)也是用交叉编译的protobuf编译器生成的,这一点很重要[^2]。 另外,引用[3]中提到了.gitignore文件,虽然与当前问题无直接关系,但提醒我们在编译过程中要注意清理不必要的文件,避免干扰[^3]。 相关问题: §§相关问题§§ 1. 如何为交叉编译环境编译protobuf库? 2. 如何检查动态库文件的目标平台架构? 3. 交叉编译时如何确保链接正确的库路径?</think>### 解决交叉编译中libprotobuf.so语法错误导致ld链接失败 #### 问题分析 当交叉编译时出现`libprotobuf.so`语法错误导致`ld`链接失败(生成`libCPL.so`失败),通常由以下原因导致: 1. **架构不匹配**:主机编译的protobuf库(如x86)被错误用于交叉编译目标平台(如ARM)[^1] 2. **ABI不兼容**:C++编译器版本或标准库(libstdc++)在主机与目标环境不一致 3. **符号冲突**:多个protobuf版本共存导致符号解析混乱 4. **路径污染**:编译系统错误链接了主机系统的protobuf而非交叉编译版本 --- #### 解决方案(逐步操作) ##### 1. **验证库文件架构** ```bash # 检查libprotobuf.so的ELF头信息 $ readelf -h /path/to/libprotobuf.so ``` - **关键字段**: - `Machine:` 应为目标架构(如ARM, AArch64) - `OS/ABI:` 应与目标系统一致(如Linux) - 若显示`ELF64-x86-64`等主机架构,说明使用了错误库文件 ##### 2. **重建交叉编译的protobuf** ```bash # 下载源码 git clone https://github.com/protocolbuffers/protobuf.git cd protobuf git submodule update --init --recursive # 配置交叉编译环境 export CC=arm-linux-gnueabihf-gcc # 替换为你的交叉编译器 export CXX=arm-linux-gnueabihf-g++ # 同上 ./autogen.sh ./configure --host=arm-linux --prefix=/opt/cross-protobuf # 指定安装路径 # 编译安装 make -j$(nproc) make install ``` ##### 3. **配置项目编译环境** 在项目Makefile/CMake中显式指定protobuf路径: ```makefile # Makefile示例 CXXFLAGS += -I/opt/cross-protobuf/include LDFLAGS += -L/opt/cross-protobuf/lib -Wl,-rpath=/opt/cross-protobuf/lib LIBS += -lprotobuf ``` ##### 4. **检查符号冲突** ```bash # 查看冲突符号 nm -D /opt/cross-protobuf/lib/libprotobuf.so | grep ' T ' > cross_symbols nm -D /usr/lib/x86_64-linux-gnu/libprotobuf.so | grep ' T ' > host_symbols diff cross_symbols host_symbols ``` - 若存在重叠符号,需清理旧版本引用 ##### 5. **强制链接器使用正确库** 在链接命令中添加: ```bash -Wl,--no-allow-shlib-undefined # 禁止未定义符号 -Wl,--as-needed # 仅链接实际使用的库 ``` ##### 6. **验证工具链一致性** ```bash # 检查所有依赖库的架构 find /opt/cross-toolchain -name "*.so*" | xargs readelf -h | grep 'Machine:' ``` - 输出应为清一色的目标架构(如`ARM`) --- #### 典型错误处理 若出现类似错误: ```log libprotobuf.so: undefined reference to `google::protobuf::internal::fixed_address_empty_string' ``` **解决方法**: 1. 在CXXFLAGS中添加`-DNDEBUG` 2. 确保所有`.proto`文件用相同版本的`protoc`重新生成: ```bash find . -name "*.proto" | xargs -I{} /opt/cross-protobuf/bin/protoc -I=. --cpp_out=. {} ``` --- #### 预防措施 1. **环境隔离**:使用Docker容器或`chroot`构建交叉编译环境 2. **版本锁定**:在项目中固定protobuf版本(推荐3.17.3+) 3. **编译检查**:在CMake中添加架构验证: ```cmake if(NOT (CMAKE_SYSTEM_PROCESSOR STREQUAL "armv7l")) message(FATAL_ERROR "ABI mismatch! Use cross-compile toolchain") endif() ``` > 通过上述步骤,90%以上的protobuf链接错误可被解决。若问题持续,需检查工具链的libc版本是否与目标系统匹配[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值