游戏数据埋点二三事

本文详细探讨了游戏数据埋点的重要性,包括数据分类、数据分析流程及数据埋点的基础原则。介绍了如何从运营数据和产品数据角度进行分类,并详细阐述了数据埋点的设计思路,如理解业务、明确上报时机、灵活选择记录数据主体以及设计数据表的字段策略。文章强调了数据埋点与业务逻辑、性能优化的密切关系,并对比了游戏数据埋点与APP数据埋点的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640?wx_fmt=gif




导语:本文宽泛的梳理了游戏产品数据相关的数据埋点内容,包含游戏数据埋点的一些原则和技巧。 主要面向刚刚接触游戏数据业务的新人,希望这篇文章能有所帮助。


数据埋点概述

1. 什么是数据埋点

数据埋点是一切数据分析的基石。它指在特定的程序功能被触发时,将这个行为记录下来。例如,当玩家登录时,记录登陆行为;在购买时记录订单等。当这些行为不被记录时,数据分析是没有任何基础数据可以分析的。


数据埋点就是解决在处理当程序功能被触发时,应该如何记录这个行为并通过合适的渠道上报的问题。


2. 游戏数据的分类

按照服务的对象分类可以分为:运营数据产品个性化数据

640


运营数据(质量数据)用来监测产品的健康程度,收益效益。例如活跃情况,收入情况等等。


产品数据往往着力于产品自身的设计验证,玩法验证以及数值平衡调整的内容。


按照数据的时间属性分类可以分为:流水数据和状态数据。

640


简而言之,流水数据是每一次行为的历史存档,例如A玩家击杀了B玩家1次;状态数据是一种状态数值,例如A玩家当前的击杀数是1。


在接下来的关于数据埋点的内容中,主要涉及的是针对游戏产品内容设计的数据埋点相关内容。质量指标(运营数据)应当采用公司规定通用的数据指标的埋点方式和上报定义。


3. 游戏数据分析的基本流程

在进行游戏产品的数据分析时一般会遵循下面的流程。

640


数据设计中就包含了数据埋点与数据上报路径的处理。游戏的功能开发结束后,数据埋点的开发就应该提上日程。最后在数据分析时通过数据清洗、筛选、提取、分析的步骤得到相关的结论来验证设计,或为下一个设计方案提供支撑。


在首次分析数据的过程中不断优化下来的数据处理方式就会逐步的制作成标准的数据处理流程。使用自动化脚本(洛子系统),idata服务(创建经营分析页面)来方便需要重复分析或长期监控的数据分析需求。


4. 数据埋点的基础原则

数据埋点时我们需要遵循一些原则,这些原则与APP数据埋点类似。

640


数据埋点的准备工作

在真正进到数据埋点之前,负责数据埋点的同学可以从两个方面着手了解。一个是数据库系统的基础知识,另一个是对业务功能机制穿透性的理解。


1. 了解一些数据库内容

1.1   信息与数据

众所周知信息与数据是有一定的关系的,那么数据埋点的同学就需要能够从信息中拆解出数据,也需要能够从数据中还原出信息。


举个例子,张三今晚在李四家吃饭,这个行为信息变成数据就是:

人物

时间

地点

吃饭行为

张三

今晚

李四家

1

 

也就是张三今晚在李四家吃了1次饭。


在策划描述自己想要了解到的数据指标时,策划往往会不够深入的去拆解本身的数据,而是描述一个经过计算后的数据指标,或者是趋势信息。这时候数据侧就需要拆解出组成指标或信息的基础数据是什么,进而进行埋点。


为了更好的理解信息与数据,举个例子:策划需要了解到武器的命中率以此来判断武器的性能是否满足设计的要求。


那么他提出的数据需求就是:

“武器的命中率是多少?


那么对于数据来说,要得到命中率的数据时,它首先要得到:

“命中次数、开火次数”


而对于在游戏中发生的程序功能来说,它描述的行为信息的记录是:


“玩家使用某个武器在某个时间某个地点开火,这次开火是否被命中,命中了什么物体。


假设玩家在单局游戏里使用AK开火10次,命中6次,那么相对应的程序的行为流水记录应该是:

人物

时间

地点

武器

是否开火

是否命中

玩家A

 

 

AK-47

1

1

玩家A

### 关于巨量引擎小游戏件跟踪和数据分析 #### 1. 巨量引擎小游戏中的埋点设置 在巨量引擎的小游戏中实施有效的件跟踪,首先需要合理设计并配置埋点方案。埋点是指在应用程序的关键路径上植入特定代码片段来记录用户的交互行为。对于小游戏而言,重要的是识别出那些能够反映用户体验质量以及转化可能性的行为节点。 例如,在游戏启动时、完成新手引导后、达到某个关卡进度或是触发内购操作等时刻都应设有相应的埋点逻辑[^1]。这些数据收集点可以帮助开发者获取详细的用户活动轨迹,从而更好地理解玩家需求并优化产品特性。 ```json { "event": "game_start", "timestamp": "2023-10-05T14:30:00Z" } ``` #### 2. 数据分析流程概述 一旦成功设置了埋点机制,则可以利用所获得的数据来进行深入剖析。具体来说: - **描述统计**:计算平均数、百分位数等基本指标;绘制直方图展示分布情况; - **关联规则挖掘**:探索不同变量之间的关系模式,比如发现某些类型的广告更可能促使用户点击或下载应用; - **预测建模**:基于历史表现构建机器学习模型以预估未来趋势变化,辅助决策制定过程。 通过上述手段,企业不仅能够评估现有营销策略的效果,还能及时调整方向以适应市场动态和发展态势[^2]。 #### 3. 广告投放效果监测 针对已发布的广告素材,可以通过集成第三方SDK或者API接口的方式接入巨量引擎提供的监控服务。该平台支持多维度报表生成功能,允许查看诸如曝光次数、点击率(CTR)、安装激活数量等核心KPIs,并且具备强大的可视化工具便于直观呈现各项统计数据的变化规律。 此外,借助A/B测试框架还可以对比多种创意版本间的差异性影响,进而挑选最优解用于大规模推广活动中去[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值