Legendre猜想:每两个连续整数的平方之间必有一个素数
定理:每两个连续正整数的平方之间必有至少两个素数
证明 1 :
设 p p p 是 n n n 前奇素数, p = { 3 , 5 , 7 , 11 , ⋅ ⋅ ⋅ , p i } , p i < n ; p=\left\{ 3,5,7,11,\cdot\cdot\cdot,p_i\right\},p_i<n; p={
3,5,7,11,⋅⋅⋅,pi},pi<n;
因为,如果 n > 1 n>1 n>1 是一个合数,那么 n n n 一定有一个素因子不超过 n ; \sqrt{n}; n;
如果 n 2 > 1 n^2>1 n2>1 是一个合数,那么 n 2 n^2 n2 的全部素因子皆不超过 n ; n; n;
所以:如果 p < n < n 2 < k < ( n + 1 ) 2 p<n<n^2<k<(n+1)^2 p<n<n2<k<(n+1)2 中的 k k k 是合数,那么 k k k 一定有一个素因子小于 n + 1. n+1. n+1.
而 n < k < n + 1 , n<\sqrt{k}<n+1, n<k<n+1, 由于 k k k 不可能是平方数,所以一定有一个素因子小于 n n n (不用取等号).
k = { n 2 + 1 , n 2 + 2 , . . . , n 2 + 2 n } k=\left\{ n^2+1,n^2+2,...,n^2+2n\right\} k={
n2+1,n2+2,...,n2+2n} 其中 n > 3 , k n>3,k n>3,k 总共有 2 n 2n 2n 个数,这些数不能全部是合数,因为: n 2 < n 2 − 1 + p < n 2 + p < ( n + 1 ) 2 , n 2 + p n^2<n^2-1+p<n^2+p<(n+1)^2,n^2+p n2<n2−1+p<n2+p<(n+1)2,n2+p 是 k k k 中的 i i i 个 ( i ≥ 1 ) . (i≥1) . (i≥1).
n n n 为偶数时 n 2 + p n^2+p n2+p 不能全部是合数, n n n 为奇数时 n 2 − 1 + p n^2-1+p n2−1+p 不能全部是合数:
( 1 ) n (1) n (1)n 为偶数时
假设 n 2 + p = { n 2 + 3 , . . . , n 2 + p i } n^2+p=\left\{ n^2+3,...,n^2+p_i \right\} n2+p={
n2+3,...,n2+pi} 全部是合数,必有 n 2 + p ≡ 0 ( m o d p ) , ( p n^2+p≡0(modp),(p n2+p≡0(modp),(p 不同时是等价错误,同哥德巴赫猜想的证明中一样多个 b ) b) b) 即 n ≡ 0 ( m o d p ) , n n≡0(modp),n n≡0(modp