论文笔记整理:谭亦鸣,东南大学博士。
来源:ESWA141(2020)
链接:https://www.sciencedirect.com/science/article/abs/pii/S0957417419306839
为了使计算机理解人类语言,并且实现推理,人类知识需要被表示并储存为能够被计算机处理的形式。知识图谱(KG)被设计为一种反应词及词间关系的结构形式。但是目前的知识图谱存在两个限制因素:其一是对于大部分人类语言来说,图谱的规模和范围存在局限性;其二则是新词跟进。为了解决这些问题,本文提出PolarisX,一种通过实时抓取分析网络新闻和社交媒体实现自动扩展的知识图谱,利用微调的BERT模型构建无语言依赖性的知识图谱。基于BERT的关系抽取模型被用来抽取新的关系,并将它们添加到知识图谱中。作者验证了PolarisX的novelty与准确性,确认其新词处理能力以及“无语言依赖性”。
动机与贡献
如上文所属,现有KG存在(大多数语言上的)规模不足,无法跟进新词等两个局限性。
如表1所示,这里的新词分为两种:1