论文浅尝 | QA-GNN: 使用语言模型和知识图谱的推理问答

e4ce645c3b7759ca4cd716577bc377c3.png

笔记整理:李继统,天津大学硕士

链接:https://arxiv.org/pdf/2104.06378.pdf

1. 动机

目前现有的方法,对于QA上下文使用LM处理,对于KG使用GNN进行处理,并且并不相互更新彼此的表示,也不做语义的对齐表示。因此QA上下文与KG的分离表示可能会限制模型执行结构化推理的能力(比如处理否定问题)。因此本篇工作主要在于QA上下文与KG的融合表示。

2. 亮点

基于知识图谱的问答(KBQA)集中于知识图谱上的多跳推理以及语言模型与知识图谱的融合,目前的方法需要解决两个问题:

(1)在给定上下文的条件下,如何从规模巨大的知识图谱中检索出相关的知识。

(2)如何进行问答上下文与知识图谱的联合推理。

本文提出了一个新的模型:QA-GNN,通过两个关键性创新来尝试解决上述问题:

(1)相关性评分:在给定问答上下文的条件下,使用语言模型计算相关性评分,来估计知识图谱中的实体对于给定上下文的重要性。

(2)联合推理:将问答上下文与筛选出的知识图谱的子图构建一张联合图,使用基于GNN的消息传递来更新彼此的表示。

3. 模型方法

如图1所示,QA-GNN 的工作原理如下。首先,我们使用 LM 来获得 QA 上下文的表示,并从 KG 中检索子图  。然后我们引入一个表示 QA 上下文的 QA 上下文节点 z,并将 z 连接到主题实体  ,我们在两个知识来源上有一个联合图,我们称之为工作图  。为了自适应地捕获 QA 上下文节点与  中的每个其他节点之间的关系,我们使用 LM 计算每对的相关分数,并将该分数用作每个节点的附加特征。然后,我们提出了一个基于注意力的 GNN 模块,该模块在  上执行消息传递以进行多轮。我们使用 LM 表示、QA 上下文节点表示和池化工作图表示进行最终预测。

70200edc8cf142d6f6dcad65dd925202.png

图1 总体架构图

(1)相关性评分

本文在给定问答上下文的条件下,使用语言模型计算相关性评分,估计知识图谱中的实体对于给定上下文的重要性。对中心实体附近few-hop的节点截为子图,对每一个entity与QA上下文做concat,然后使用预训练语言模型(本文使用的是RoBERTa),计算它们的相似程度。

对于每个节点 ,QA的上下文,节点的相关性评分为:

3e76a55c6bb305f9d439725be0da9439.png

(2)联合推理

本文中将问答上下文与筛选出的知识图谱的子图构建一张联合图,使用基于GNN的消息传递来更新彼此的表示。

6d785b233231cdb3f22c176f41db0910.png

图2 联合推理

该文章在CommonsenseQA以及OpenBookQA数据集上,进行了实验,实验表明,QA-GNN方法比fine-tune LM与现有的LM+KG方法分别提高了 5.7% 和 3.7% ,以及处理结构化推理(如否定问题)的能力,比目前的fine-tune LM有4.6%的提升。

4. 实验结果

本文的实验结果在官方排行榜上均取得了与其他系统竞争的结果。值得注意的是,前两个系统 T5 (Raffel et al., 2020) 和 UnifiedQA (Khashabi et al., 2020) 使用更多的数据进行训练,并且比本文的模型使用 8x 到 30 倍的参数(本文模型的参数为 ∼360M)。排除这些和集成系统,本文的模型在与其他系统的大小和数据量上具有可比性,并在两个数据集上实现了最佳性能。

表1 CommonsenseQA 官方排行榜上的测试准确性

3657328c15e21f9546f98ed834c2d20e.png

表2 OpenBookQA 排行榜上的测试准确性

30ada0eb9b92a27c356a840c9eb8c881.png

表3 CommonsenseQA IHdev上的消融实验

133b2bdac635e034a63989e04c52e573.png

5. 总结

本文提出了QA-GNN,利用预训练语言模型与GNN融合QA上下文与KG。通过使用相关性评分,从知识图谱中检索实体相关子图,并衡量每个节点对于QA上下文的重要程度,这保证了在后续进行融合时,能够注意到这样的相关性信息。接着通过将QA上下文视作一个节点添加进KG,通过工作图连接两个信息源,并通过GNN消息传递联合更新它们的表示。本文是GNN在融合QA上下文与KG的一个尝试,在问答任务上相比现有的预训练语言模型、以及预训练+KG模型,都有不小的提升。同时,使用attention-base GNN,能够可视化知识图谱中节点之间的注意力关系,有助于提高QA可解释性和结构化推理的能力。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

1b0f69ac31b7ee00992dbe319d532a54.png

点击阅读原文,进入 OpenKG 网站。

  • 8
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
QA-GNN方法的实现主要包括以下步骤: 1. 数据预处理:首先,将问答数据集和知识图谱数据进行预处理,将它们转换为图结构的表示形式。问题和答案可以表示为节点,知识图谱中的实体和关系可以表示为边。 2. 图构建:根据预处理的数据,构建问题-答案图和知识图谱。问题-答案图中的节点表示问题和答案,边表示它们之间的关系。知识图谱中的节点表示实体,边表示实体之间的关系。 3. 特征提取:对于每个节点(问题、答案和知识图谱中的实体),使用语言模型对其进行编码,得到节点的语义特征表示。这可以通过预训练的语言模型(如BERT)来实现。 4. 图神经网络:利用图神经网络对问题-答案图和知识图谱进行推理和表示学习。图神经网络可以通过消息传递机制来传递节点之间的信息,并通过图卷积等操作来更新节点的表示。 5. 答案生成:根据经过图神经网络处理后的节点表示,使用适当的方法生成最终的答案。这可以是基于分类、生成模型或其他技术。 6. 训练和评估:使用已标注的问答数据进行训练,并使用评估指标(如准确率、召回率等)评估模型的性能。 需要注意的是,具体实现中可能还涉及一些细节和技巧,如图神经网络的具体结构、节点特征的融合方式、损失函数的设计等。这些可以根据具体情况进行调整和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值