论文链接:https://arxiv.org/pdf/1805.09927.pdf
来源:ACL2018
Motivation:
远程监督是以一种生成关系抽取训练样本的方法,无需人工标注数据。但是远程监督引入了噪音,即存在很多的假正例。本文的出发点非常简单,希望通过强化学习的方法来训练一个假正例的判别器,它可以识别出数据集中的假正例,并加入到负例集中。产生更加干净的训练集,从而提高分类器的性能。
Relatedwork:
对于远程监督的噪音,之前常用的做法是加attention机制,给以真正例更大的权重,给以假正例较小的权重,单这种方法是次优的。本文有一个有意思的地方,作者在文中指出,他在提交了ACL之后,发现已经有一篇相同的工作. Reinforcement learning for relation classification from noisy data(