论文浅尝 | 基于深度强化学习的远程监督数据集的降噪

该论文提出使用强化学习训练一个假正例判别器,以识别并去除远程监督数据集中的噪音,提高关系抽取分类器的性能。通过在验证集上比较分类器的F1值变化来定义奖励,使用策略梯度更新参数。实验结果显示,这种方法能有效提升分类器在NYT数据集上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640?wx_fmt=png

论文链接:https://arxiv.org/pdf/1805.09927.pdf

来源:ACL2018


Motivation

远程监督是以一种生成关系抽取训练样本的方法,无需人工标注数据。但是远程监督引入了噪音,即存在很多的假正例。本文的出发点非常简单,希望通过强化学习的方法来训练一个假正例的判别器,它可以识别出数据集中的假正例,并加入到负例集中。产生更加干净的训练集,从而提高分类器的性能。

Relatedwork

对于远程监督的噪音,之前常用的做法是加attention机制,给以真正例更大的权重,给以假正例较小的权重,单这种方法是次优的。本文有一个有意思的地方,作者在文中指出,他在提交了ACL之后,发现已经有一篇相同的工作. Reinforcement learning for relation classification from noisy data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值