深度学习自学(十五):人脸识别数据预处理方法

本文分享了人脸数据处理及学习经验,涵盖人脸检测、关键点检测、优选、对齐、特征提取、跟踪及活体检测等内容。介绍了数据聚类与预处理方法,以及常见网络结构,如MTCNN检测、PFLD关键点模型和MobileFaceNet。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理的人脸系列学习经验:包括人脸检测、人脸关键点检测、人脸优选、人脸对齐、人脸特征提取、人脸跟踪、人脸活体检测等学习过程总结,有需要的可以参考,仅供学习,请勿盗用。https://blog.csdn.net/TheDayIn_CSDN/article/details/93199307

一、数据聚类

假如有一批人脸数据,包含单人或者多个人脸ID,可以按照如下聚类方法进行预处理。

1.通过人脸识别方法(模型)提取人脸特征;

2.使用每个名人的正脸图片作为它的种子;

3.使用那些只有1个人脸的图片去增加每个名人的种子的数量;

4.在gallery剩下的图片中,通过与种子的相似度来找到属于每个名人的其余照片。

5.裁剪人脸,将同一个名人的脸单独存入一个路径内,之后再进行人工纠错,进一步提高数据集纯度。

二、训练数据预处理

人脸识别处理流程:人脸检测+人脸关键点定位+基于关键点的人脸对齐(相似变换、仿射变换)

所以预先使用更好的人脸检测和关键点定位算法来对齐人脸,对人脸识别性能影响很大,特别是人脸关键点定位的准确性。

一般的网络结构:

1、MTCNN检测+五个关键点+相似变换+SphereFace(softmax+arcface)

2、SSD人脸检测模型+PFLD关键点模型+仿射变换+MobileFaceNet(softmax)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值