Bagging 与Boosting 特点分析

Bagging和Boosting是两种集成学习方法。Bagging通过子抽样降低方差,防止过拟合,其典型应用是Random Forest。基模型为强模型,偏差小但方差可能限制准确度上限。Boosting则要求弱模型,通过增加模型数量提高期望,但过大的方差可能导致反向效果。Gradient Tree Boosting中,特征抽样能减少基模型相关性,降低方差。
摘要由CSDN通过智能技术生成

- bagging的偏差和方差

对于bagging来说,每个基模型的权重等于1/m且期望近似相等(子训练集都是从原训练集中进行子抽样),故我们可以进一步化简得到:

  根据上式我们可以看到,整体模型的期望近似于基模型的期望,这也就意味着整体模型的偏差和基模型的偏差近似。同时,整体模型的方差小于等于基模型的方差(当相关性为1时取等号),随着基模型数(m)的增多,整体模型的方差减少,从而防止过拟合的能力增强,模型的准确度得到提高。但

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值