bzoj4987 Tree 分类讨论+树形背包

题目链接:传送门

首先发现所有选出的点一定是一个联通块。
考虑怎样排列这个联通块中的点能使答案最小:
从这个联通块的直径一端沿着直径走,每次访问一个新的节点就把它除直径上连接的点外所有连接的点都访问一遍,再沿着直径继续走。珂以证明这样走答案是最小的qwq。
不难发现除了直径外的所有边都要走两次,直径上的边只用走一次。
d p [ i ] [ j ] [ 0 / 1 / 2 ] dp[i][j][0/1/2] dp[i][j][0/1/2]表示 i i i的子树内选出了 j j j个点,其中包含0/1/2个 最 终 联 通 块 中 的 \color{red}最终联通块中的 直径的端点的最小答案。
那么在树上跑背包,大莉分类讨论即可qwq(具体见代码,代码中有详细注释)。

毒瘤代码

#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<math.h>
#define re register int
using namespace std;
typedef long long ll;
int read() {
	re x=0,f=1;
	char ch=getchar();
	while(ch<'0' || ch>'9') {
		if(ch=='-')	f=-1;
		ch=getchar();
	}
	while(ch>='0' && ch<='9') {
		x=10*x+ch-'0';
		ch=getchar();
	}
	return x*f;
}
inline char GetChar() {
	char ch=getchar();
	while(ch!='Q' && ch!='B')	ch=getchar();
	return ch;
}
const int Size=3005;
namespace I_Love {

int n,k,cnt,head[Size];
struct Edge {
	int v,t,next;
} w[Size<<1];
void AddEdge(int u,int v,int t) {
	w[++cnt].v=v;
	w[cnt].t=t;
	w[cnt].next=head[u];
	head[u]=cnt;
}
ll dp[Size][Size][3],tmp[Size][3];
int siz[Size];
bool flag[Size];
void dfs(int x,int fa) {
	siz[x]=1;
	dp[x][1][0]=dp[x][1][1]=dp[x][1][2]=0;
	for(int i=head[x]; i; i=w[i].next) {
		int nxt=w[i].v;
		if(nxt!=fa) {
			dfs(nxt,x);
			//记录一个临时数组保存答案
			memset(tmp,0x3f,sizeof(tmp));
			int maxj=min(k,siz[x]);
			for(re j=1; j<=maxj; j++) {
				int maxk=min(k-j,siz[nxt]);
				for(re l=1; l<=maxk; l++) {
					//1.x->0  y->0 
					//x和y中都不包含直径端点,所以x->y的边不在直径上,算两次 
					tmp[j+l][0]=min(tmp[j+l][0],dp[x][j][0]+dp[nxt][l][0]+(w[i].t<<1));
					//2.x->0  y->1
					//如果x->y不是直径的一部分,说明y的子树中包含两个直径的端点,不成立 
					//所以x->y是直径的一部分,算一次 
					tmp[j+l][1]=min(tmp[j+l][1],dp[x][j][0]+dp[nxt][l][1]+w[i].t);
					//3.x->1  y->0
					//如果x->y是直径的一部分,说明y中应该也有一个直径端点,不成立 
					//所以x->y不是直径的一部分,算两次 
					tmp[j+l][1]=min(tmp[j+l][1],dp[x][j][1]+dp[nxt][l][0]+(w[i].t<<1));
					//4.x->0  y->2
					//x->y的边显然不在直径上,算两次 
					tmp[j+l][2]=min(tmp[j+l][2],dp[x][j][0]+dp[nxt][l][2]+(w[i].t<<1));
					//5.x->1  y->1
					//对于x之前的子树内任意节点u,y的字数内任意节点v,u,v的LCA为x 
					//所以x->y的边一定在直径上,算一次 
					tmp[j+l][2]=min(tmp[j+l][2],dp[x][j][1]+dp[nxt][l][1]+w[i].t);
					//6.x->2  y->0
					//同4,x->y的边一定不在直径上,算两次 
					tmp[j+l][2]=min(tmp[j+l][2],dp[x][j][2]+dp[nxt][l][0]+(w[i].t<<1));
				}
			}
			for(re j=1; j<=k; j++) {
				for(re l=0; l<3; l++) {
					dp[x][j][l]=min(dp[x][j][l],tmp[j][l]);
				}
			}
			siz[x]+=siz[nxt];
		}
	}
}
void Kutori() {
	n=read();
	k=read();
	for(re i=1; i<n; i++) {
		int u=read();
		int v=read();
		int t=read();
		AddEdge(u,v,t);
		AddEdge(v,u,t);
	}
	memset(dp,0x3f,sizeof(dp));
	dfs(1,0);
	ll ans=1e18;
	for(re i=1; i<=n; i++) {
		//联通块中一定有两个直径端点qwq 
		ans=min(ans,dp[i][k][2]);
	}
	printf("%lld",ans);
}

}
int main() {
	I_Love::Kutori();
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值