小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值。初始的时候,森林中有M条边。
小Z希望执行T个操作,操作有两类:
Q x y k
查询点x到点y路径上所有的权值中,第k小的权值是多少。此操作保证点x和点y连通,同时这两个节点的路径上至少有k个点。
L x y
在点x和点y之间连接一条边。保证完成此操作后,仍然是一片森林。
为了体现程序的在线性,我们把输入数据进行了加密。
神仙题……
第k小想到树上主席树。
合并时发现一个困难的地方:当合并
x
,
y
x,y
x,y时,
x
,
y
x,y
x,y不一定是自己所在树的根。
所以启发式合并,每次暴力重构节点数小的树,接到大的树上即可qwq。
细节一堆,要调一年……
毒瘤代码
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<vector>
#define re register int
#define rl register ll
using namespace std;
typedef long long ll;
int read() {
re x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9') {
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9') {
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
return x*f;
}
inline void write(const int x) {
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline char GetChar() {
char ch=getchar();
while(ch!='Q' && ch!='L') ch=getchar();
return ch;
}
const int Size=80005;
namespace UnionFindSet {
int father[Size],siz[Size];
inline void init(int n) {
for(re i=1; i<=n; i++) {
father[i]=i;
siz[i]=1;
}
}
int Find(int x) {
if(x==father[x]) return x;
return father[x]=Find(father[x]);
}
}
using namespace UnionFindSet;
const int Maxn=30000005;
int n,m,t,tot,maxn,v[Size],nv[Size],T[Size];
//树上主席树
int ls[Maxn],rs[Maxn],sum[Maxn];
void update(int pre,int l,int r,int x,int &rt) {
rt=++tot;
ls[rt]=ls[pre];
rs[rt]=rs[pre];
sum[rt]=sum[pre]+1;
if(l==r) return;
int mid=(l+r)>>1;
if(x<=mid) {
update(ls[pre],l,mid,x,ls[rt]);
} else {
update(rs[pre],mid+1,r,x,rs[rt]);
}
}
int query(int l,int r,int u,int v,int lca,int flca,int k) {
if(l==r) return l;
int mid=(l+r)>>1,num=sum[ls[u]]+sum[ls[v]]-sum[ls[lca]]-sum[ls[flca]];
if(k<=num) {
return query(l,mid,ls[u],ls[v],ls[lca],ls[flca],k);
} else {
return query(mid+1,r,rs[u],rs[v],rs[lca],rs[flca],k-num);
}
}
int cnt,head[Size];
struct Edge {
int v,next;
} w[Size<<1];
void AddEdge(int u,int v) {
w[++cnt].v=v;
w[cnt].next=head[u];
head[u]=cnt;
}
int anc[Size][18],deep[Size];
void dfs(int x,int fa) {
update(T[fa],1,maxn,v[x],T[x]);
anc[x][0]=fa;
deep[x]=deep[fa]+1;
for(re i=1; i<=16; i++) {
anc[x][i]=anc[anc[x][i-1]][i-1];
}
for(int i=head[x]; i; i=w[i].next) {
int nxt=w[i].v;
if(nxt!=fa) {
dfs(nxt,x);
}
}
}
inline void merge(int u,int v) {
//启发式合并,把小的树暴力重构,接到大的树上
int fu=Find(u);
int fv=Find(v);
if(siz[fu]<siz[fv]) {
swap(u,v);
swap(fu,fv);
}
AddEdge(u,v);
AddEdge(v,u);
dfs(v,u);
siz[fu]+=siz[fv];
father[fv]=fu;
}
inline int LCA(int u,int v) {
if(deep[u]<deep[v]) swap(u,v);
for(re i=16; i>=0; i--) {
if(deep[anc[u][i]]>=deep[v]) {
u=anc[u][i];
}
}
if(u==v) return u;
for(re i=16; i>=0; i--) {
if(anc[u][i]!=anc[v][i]) {
u=anc[u][i];
v=anc[v][i];
}
}
return anc[u][0];
}
inline int Query(int x,int y,int k) {
int lca=LCA(x,y);
return query(1,maxn,T[x],T[y],T[lca],T[anc[lca][0]],k);
}
int main() {
// freopen("testdata.in","r",stdin);
// freopen("WA.txt","w",stdout);
int testcase=read();
n=read();
m=read();
t=read();
init(n);
for(re i=1; i<=n; i++) {
nv[i]=v[i]=read();
deep[i]=1;
}
sort(nv+1,nv+1+n);
maxn=unique(nv+1,nv+1+n)-(nv+1);
for(re i=1; i<=n; i++) {
v[i]=lower_bound(nv+1,nv+1+maxn,v[i])-nv;
update(T[i],1,maxn,v[i],T[i]);
}
for(re i=1; i<=m; i++) {
int u=read();
int v=read();
merge(u,v);
}
int lastans=0;
while(t--) {
char ch=GetChar();
int x=read()^lastans;
int y=read()^lastans;
if(ch=='Q') {
int k=read()^lastans;
write(lastans=nv[Query(x,y,k)]);
putchar(10);
} else {
merge(x,y);
}
}
return 0;
}
/*
1
4 2 1
412060525 42425138 926214957 762952138
2 4
3 2
Q 3 4 2
*/