量化数据预处理:去极值、标准化、中性化

对于量化研究而言,拿到一份基础数据,首先需要对数据做预处理,以便于更好的探究数据规律,基于不同目标有不同处理环节,其中去极值、标准化、中性化这三点经常被放在一起讨论。整理网络资料,理解如下。

  • 去极值

    数据(单个因子的时间序列数据)中存在异常值,可能会导致拉大标准差、拉偏统计规律…

    常规处理理念就是确定此数据指标(比如某个因子)的上下限阈值,然后超过(或低于)此限度的数据均设置为阈值,以提高数据结论的准确性。

    上下限的判定方法有三种:MAD、 3 σ 3\sigma 3σ法、百分位法。

    • MAD(Median Absolute Deviation, 绝对值差中位数法)

      MAD,先计算所有因子与平均值之间的距离总和来检测离群值。

      • 计算所有因子的中位数 X m e d i a n X_{median} Xmedian
      • 计算每个因子与中位数的绝对偏差值 X i − X m e d i a n X_i-X_{median} XiXmedian
      • 计算绝对偏差值的中位数 M A D MAD MAD
      • 确定参数 n n n,从而确定合理的范围为 [ X m e d i a n − n ∗ M A D , X m e d i a n + n ∗ M A D ] [X_{median}-n*MAD,X_{median}+n*MAD] [XmediannMAD,Xmedian+nMAD],针对超出合理范围的值做如下调整:

        X i ′ = { X m e d i a n + n ∗ M A D        i f    X i > X m e d i a n + n ∗ M A D X m e d i a n − n ∗ M A D        i f    X i < X m e d i a n − n ∗ M A D X i                                                              i f    X m e d i a n − n ∗ M A D < X i < X m e d i a n + n ∗ M A D

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值