本地部署 Ollama 模型并实现本地可视化聊天界面(使用 DeepSeek)

项目背景

随着大语言模型(LLM)技术的发展,Ollama 是一个开源的零信任本地化 AI 框架,它允许您在本地运行大型语言模型,并通过简单的 API 实现实例化和推理。DeepSeek 提供了一个易于使用的 Python 接口库,可以快速集成 Ollama 模型并构建基于模型的应用。

本次项目的目标是:

  1. 在本地部署一个 Ollama 模型实例。
  2. 使用Chatbox实现界面对话

通过本项目的实现,读者将能够了解如何在本地运行 Ollama 模型,实现界面对话


项目目标

  1. 部署 Ollama 模型:使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。
  2. 实现本地聊天界面:使用  ChatBox,支持用户与模型交互,并显示响应结果。

项目步骤

步骤 1:环境配置

我们需要先在本地安装必要的软件和依赖项。

1.1 安装系统要求(可选)

Ollama 和 DeepSeek 需要在 CPU 或 CUDA 环境中运行。为了能够利用 CUDA 加速,建议使用以下硬件:

  • 至少一个高性能的 CPU(最好有至少 4 核心)。
  • 具备支持 CUDA 的 GPU(如 NVIDIA 显卡)。
### 部署 DeepSeek 模型配置可视化界面 #### 安装 OllamaDeepSeek 模型 为了在 Ubuntu 或 Windows 上使用 Ollama 平台部署 DeepSeek 模型,需先确保已安装 Ollama 软件环境。完成安装后,在终端输入如下命令启动指定版本的 DeepSeek 模型: ```bash ollama run deepseek-r1:8b ``` 此命令用于运行名为 `deepseek-r1` 的 8GB 版本模型[^1]。 #### 设置 ChatBox 实现简易图形交互 对于希望获得更友好用户界面的情况,可选用第三方应用程序——ChatBox 来增强用户体验。通过访问官方网站 https://chatboxai.app/zh 下载对应操作系统的客户端程序文件,按照提示完成安装过程。首次启动应用时,应选择自定义 API Key 或者本地模型选项;随后设定服务提供商为 OLLAMA API,挑选之前加载过的 `deepseek r1:8b` 模型实例作为聊天伙伴[^2]。 #### 构建 WebUI-Lite 提供完整浏览器端体验 追求更为专业的解决方案,则推荐采用开源项目 ollama-webui-lite 。获取源码仓库链接后,依照以下步骤操作: 1. 利用 Git 工具克隆远程库至个人计算机; 2. 打开命令行工具切换目录至新创建的工作区; 3. 输入 `npm ci` 命令来初始化 Node.js 开发所需的各种包依赖关系; 4. 接着键入 `npm run dev` 启动开发服务器监听默认端口; 5. 浏览器中访问 http://localhost:3000 地址查看实时渲染效果; 6. 登录后台管理系统选取先前准备好的大型预训练语言模型开展交流活动[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

There Is No Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值