企业本地大模型用Ollama+Open WebUI+Stable Diffusion可视化问答及画图

最近在尝试搭建公司内部用户的大模型,可视化回答,并让它能画图出来, 主要包括四块:

  1. Ollama 管理和下载各个模型的工具
  2. Open WebUI 友好的对话界面
  3. Stable Diffusion 绘图工具
  4. Docker 部署在容器里,提高效率

以上运行环境Win10, Ollama,SD直接装在windows10下, 然后安装Docker Desktop版, 将Open WebUI部署在Docker内

一 Ollama

直接去https://ollama.com/ 下载安装

Ollama修改存储路径

不改的话系统盘装不下,默认情况下ollama模型的存储目录如下:

macOS: ~/.ollama/models
Linux: /usr/share/ollama/.ollama/models
Windows: C:\Users\<username>\.ollama\models

指定安装路径

OllamaSetup.exe /DIR="C:\Program Files\Ollama"

的Windows10, 则需设置环境变量 OLLAMA_MODELS, 把它设置为所选目录。

OLLAMA_MODELS=D:\ollama-models

如果想在其他电脑用ip可以访问加环境变量,为了安全可以不加:

OLLAMA_HOST=0.0.0.0
OLLAMA_ORIGINS=*

ollama 环境变量
默认端口:11434 , 打开显示Ollama is running 表示成功
ollama 是否成功安装

Ollama安装大模型和索引模型

从这里查看模型库: https://ollama.com/library
下载 qwen2 qwen ,chinese, llama3 shaw/dmeta-embedding-zh 等模型

阿里巴巴的大模型:
ollama run  qwen
ollama run qwen:14b
ollama run qwen:32b
ollama run qwen:72b
ollama run qwen:110b   # 110b 表示该模型包含了 1100 亿(110 billion)个参数
​
​
脸书大模型:
ollama run llama2
ollama run llama3
ollama run llama3:8b
​
谷歌的大模型:
ollama run gemma
​
微软的大模型
ollama run phi3
​
显示所有模型
# ollama list
​
删除模型
# ollama rm llama3:latest

下载完后可以直接在CMD下与它对话:
ollama list

二 Docker

下载:https://www.docker.com/products/docker-desktop/ 最新版本, 我当时下载的l默认版本 4.31.1, 后来发现是大坑, 一会儿再讲原因, 后来重装了4.29.0,从这里下载历史版本:
https://docs.docker.com/desktop/release-notes/

docker提速改国内源下载:

"registry-mirrors": [
    "https://hub-mirror.c.163.com",
    "https://mirror.baidubce.com"
  ]

改docker源
参考: https://www.cnblogs.com/Flat-White/p/17107494.html

docker修改默认存储位置

缓存文件还是不要放在C盘上,得改到其他盘。 发现4.31.0无论如何没有data那个目录,反复很多次不成功,在搜了一晚上后差点放弃不改路径了, 后来换了个版本4.29.0后正常了,将C盘AppData\docker\wsl\下的缓存改到D:\docker-data:

wsl --shutdown
wsl --export docker-desktop-data D:\docker-data\docker-desktop-data.tar
wsl --unregister docker-desktop-data
wsl --import docker-desktop-data D:\docker-data D:\docker-data\docker-desktop-data.tar --version 2

参考: https://www.cnblogs.com/xhznl/p/13184398.html

三 Stable Diffusion

直接用秋叶大佬的一键安装包: https://www.stablediffusion-cn.com/sd/sd-install/118.html
安装上常规的插件ControlnetLora, 把远程监听打开,让其他的机子可以访问
这个不用多说, 里面的使用以后我再开个贴子

四 Open WebUI

前面已经部署过docker, 目的是方便管理维护, 在CMD下:

docker run -d -p 3450:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

Open WebUI查看Ollama 关联

改了默认端口 3000,改为3450的目的是与后面的知识库部署有冲突
默认要注册个帐号,登进去查看关联的Ollama地址对不对
open web ui 关联ollama模型

Open WebUI关联Stable Diffusion

填上SD地址,选好SD模型名称(**注意是SD的生成图片的模型,不是Ollama的大模型 **), 权限字符串估计是个认证防止很多人联SD来用占资源,加个123的密码
open web ui关联SD

五 最终效果展示

二种不同的模型不同的回答,qwen2要强得多
在这里插入图片描述
画图要装stable diffusion-prompt-generator模型,然后在回答文字下面选那排图标,有个生成图象的图标,点它,等一会儿就生成出来了
在这里插入图片描述

交流q:

link :  316853809
### Ollama 图片识别大模型使用指南 Ollama 是一个高效的开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计[^3]。最近,Ollama 增强了其功能,引入了对 Llama 3.2 视觉模型的支持,这使得用户不仅可以处理文本数据,还可以分析图像数据[^1]。以下是关于如何使用 Ollama 图片识别大模型的详细介绍。 #### 安装与配置 首先需要确保系统已安装 Docker,因为 Ollama 的运行依赖于 Docker 环境。接下来,可以通过以下命令安装 Ollama: ```bash curl https://ollama.ai/install.sh | sh ``` 安装完成后,可以验证安装是否成功: ```bash ollama -v ``` #### 下载视觉模型 为了支持图片识别功能,Ollama 提供了对 Llama 3.2 视觉模型的支持。下载该模型的命令如下: ```bash ollama pull llama3.2-vision ``` 此命令会从远程仓库中拉取 Llama 3.2 视觉模型,并将其存储在本地以供后续使用[^1]。 #### 使用视觉模型 一旦模型下载完成,就可以通过简单的 API 调用或命令行工具来使用它。例如,假设有一个名为 `image.jpg` 的图像文件,可以通过以下命令进行图片识别: ```bash ollama run llama3.2-vision --image=image.jpg ``` 此命令将加载 Llama 3.2 视觉模型,并对指定的图像文件进行分析。输出结果可能包括图像中的对象检测、分类以及其他相关信息[^1]。 #### 集成到 RAG 系统 如果希望将视觉模型集成到检索增强生成(RAG)系统中,可以参考相关文档进一步扩展功能。RAG 系统能够结合外部知识库与模型生成的内容,从而提升生成结果的质量和准确性[^1]。具体实现方法可以根据实际需求定制开发。 #### 示例代码 以下是一个 Python 示例,展示如何通过 Ollama API 调用视觉模型进行图片识别: ```python import subprocess def recognize_image(image_path): result = subprocess.run( ["ollama", "run", "llama3.2-vision", f"--image={image_path}"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if result.returncode == 0: return result.stdout else: return result.stderr # 示例调用 output = recognize_image("image.jpg") print(output) ``` 此代码片段利用 `subprocess` 模块调用 Ollama CLI 工具,实现对指定图像文件的识别操作。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值