网络质量评估

一、google的nqe

国内大部分公司的网络质量评估模型都是基于google的nqe而来的

https://chromium.googlesource.com/chromium/src/+/HEAD/net/nqe/network_quality_estimator.cc

二、参考文章

即时通讯网整理的关于网络模型和弱网优化的文章,目前更新到第14篇了:移动端弱网优化专题(一):通俗易懂,理解移动网络的“弱”和“慢”-IM开发/专项技术区 - 即时通讯开发者社区!

携程关于弱网的优化,值得一看:https://www.51cto.com/article/800884.html

三、其他

弱网测试手段:WebRTC vs. Zoom 之外:WebRTC 的弱网模拟测试 | WebRTC中文网-最权威的RTC实时通信平台

四、一些思考

上述文章的弱网优化大多是基于HTTP请求即request和response角度来进行的,是否可以将这些优化经验或者模型应用到关于实时音视频传输的弱网优化中呢?我认为是可以的,因为在RTC中不仅仅可以通过音视频的传输指标来评估网络质量,还可以从信令角度来评估,而从信令的角度进行网络质量评估时,上述文章中的优化点就可以被参考了。

关于google nqe代码分析的文章我几乎没找到,所以等自己后续有时间了,打算具体剖析一下nqe,看一下其网络质量评估和rtc中的网络质量评估有何不同?

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力和灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制和解调过程通过FFT(快速傅立叶变换)和IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据和解调原始数据。 Matlab是一种广泛应用于科研、工程和数据分析的高级编程语言和交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库和工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理和信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域(WLAN)以及4G/LTE和5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值