从零开始的游戏运营数据分析生活?如何构建数据分析的逻辑框架?

本文由盛趣游戏数据分析专家黎湘艳分享,探讨如何构建数据分析体系,推动业务发展。讲解了数据分析的流程、核心指标、常用框架和方法,强调数据分析应击中业务痛点,实现数据驱动业务。核心数据指标包括留存率、CPL、LTV、ROI等,通过实例展示了如何运用这些指标评估和预测游戏运营效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5月30日,数数课堂特邀盛趣游戏数据分析专家黎湘艳老师坐镇第五期直播。

黎湘艳老师向学员们分享了历经超50多款产品沉淀下来的数据分析思维,让大家对数据分析的岗位理解从一个日常节点,展开成为可以预测产品、行业走向的方向标。

/以下为直播当天文字实录/


我在《游戏数据分析实战》开头写的第一句话是:

“作为数据分析师,最大的成就感莫过于自己的分析报告推动了业务的开展,并在业务开展过程中证实了其合理性,这也正是数据分析师的价值所在。”

今天的课程中我将讲述:作为一名分析师,如何构建自己的分析体系,让自己的数据分析结果,成为可以切实推动业务发展的驱动力。

下面是今天的课程内容:

从零开始的游戏运营数据分析生活?如何构建数据分析的逻辑框架

 

01 数据为治之而非统之

我平时做过很多驱动业务的工作,主要围绕产品、市场和运营三大业务场景。我的工作分别为游戏、IP引进把关、为游戏立项把关、为游戏研发把关、为资源投放把关、为市场营销把关、为游戏运营把关。

从零开始的游戏运营数据分析生活?如何构建数据分析的逻辑框架

 

1.IP把关I IP引进价值分析、引进/自研游戏成功率预测

当公司要引进一个IP时,我们通常都会先对IP的价值进行分析(包含用户价值,商业价值,内容价值,战略价值)。

我们会评估该IP是否值得引进,引进的价格区间是多少。例如我们之前想引进一个日本市场的国民级IP,但是经过一系列调查,发现这个IP在中国市场算一个小众IP。除此之外,我们内部还有一个新游戏成功率模型, 可以根据新游戏的相关信息进行成功率预测。

2.立项把关I 精准定位目标用户,评估不同研发方案的利弊,预估靠谱流水

“精准定位目标用户”的目的是要做“精准开发”,首先要知道我们的目标用户有哪些,找到用户未满足的需求,做到极致。我们一般通过爬虫的数据、问卷调研的数据、竞品游戏的数据,以及整个市场的数据来分析。

比如:策划组纠结是做MOBA竞技玩法、吃鸡玩法,还是考虑融合Roguelike+关卡自适应功能等等,我们通常会分析各种玩法的利弊。当研发方向确定时,我们会预估相应流水等等,这些都是为游戏立项把关。

3.研发把关I 个性埋点,点对点找出问题;付费模块、爆率设计的优化

在游戏研发阶段,我们会拉策划对齐整个测试的数据预期,发现不符合预期的地方,和策划一起定位问题。比如,他们对于玩法、养成、商业化、职业等游戏玩法的预期参与度是多少?策划有什么样的预期和关注点。

然后我们会重点监控这几个模块的数据,发现不符合预期的地方,就拉着策划一起定位问题,比如玩法参与率发现十分不符合预期,那就去分析用户行为,用户属性。

我们数据分析师的宗旨是:“针对具体的病治病,不做纲领性建议。”

4.投入把关I 评估产品质量;构造收入、活跃预测框架和模型,优化买量

游戏测试阶段,可以根据游戏数据进行产品质量评级,给出最优市场投放建议,也会分析买量的效果数据,为买量优化提供数据参考。

关于市场把关及运营把关,我在《数数课堂·第四期 I 一个运营人的数据分析成长史》有过详细的介绍,感兴趣的朋友可以去看看。

02 数据分析的“六脉神剑”

数据分析的定义就是从数据中提取有用的信息,并指导实践。下面我举一个例子来梳理一下具体流程:

需求背景:某游戏进行版本更新,在版本更新节点进行了视频和微博投放,需要对投放效果进行分析。

从零开始的游戏运营数据分析生活?如何构建数据分析的逻辑框架

 

1.明确需求

首先要明确这次分析的需求就是看投入的游戏数据有哪些变化,投放的ROI是多少。

2.收集数据

从公司内部数据库可以收集到人数、收入、留存等数据,从公司外部(微博、视频网站)可以收集到点击量、评论数、弹幕和评论内容数据。

3.处理数据

处理数据就是采用适当的统计方法对收集的数据继续清洗,提取有用的信息和规律。常用手段有,sql统计用户留存、等级、用户数、收入等数据,或者用python爬取外部数据。

4.分析数据

主要采用对比法、分组法、结构分析法、文本分析法,得出广告投放前后的数据变化,视频类投放和微博类投放的效果差异,以及用户评论的关键信息。

5.展现数据

买量投放需要用到折线图展现人数和收入的变化、柱状图展现微博和视频投放的效果差异,用词云图展示玩家评论的关键信息。

6.报告撰写

有标题,导语,结论和详细分析四部分。这篇报告,我们一般会在开头就给出核心结论,活动投入多少,带来多少新增,跟活动前相比有什么变化,带来了多少收益,新用户成本是多少,ROI是多少。

03 数据分析≠数据驱动业务

如果要实现数据驱动业务,不论是模型,还是数据分析结论,其结果都要进行评估。

评估下来其结论是合理、可用的,项目团队会将其作为进行运营、市场活动方案设计的决策参考依据之一。如果不可以用,则分析师需要重新梳理需求,按上述过程重新走一遍。

数据是否能对项目真正产生积极影响,取决于数据结论是否能击中业务痛点以及报告对象对数据的重视程度。

从零开始的游戏运营数据分析生活?如何构建数据分析的逻辑框架

 

比如说:

1.预热期的用户调研能找到目标用户的特点,促使发行人员会参考分析报告结果确定时间、地点及宣传方式;

2.封测期间的用户调研能了解用户对游戏各项功能的体验评价及相关建议,促使研发人员采纳,以数据反哺研发;

3.测算最优市场费用能帮助项目合理分配资源,避免资源浪费;

4.市场投放效果分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值