神经网络中的重要概念

摘自:点击打开链接

感知机:输入层、输出层和一个隐含层。

输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果;

使用离散的传输函数;

多层感知器:= 神经网络


上图展示了多层感知器的结构

使用sigmoid或tanh等连续函数模拟神经元对激励的相应

训练算法:反向传播BP算法

神经网络的层数直接决定了它对现实的刻画能力。但是随着神经网络层数的加深,优化函数越来越容易陷入局部最优解。

同时,另一个不可忽略的问题是随着网络层数增加,“梯度消失”现象更加严重。即,对于幅度为1的信号,在BP反向传播时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后底层基本上接收不到有效的训练信号。


深度学习:

利用预训练方法缓解了局部最优解问题,将隐含层推动到更多层;

为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了DNN的基本形式;

单从结构上来说,全连接的DNN和上图的多层感知器是没有任何区别的。

存在的问题:全连接DNN 的结构里下层神经元和所有上层神经元都能够形成连接,导致的潜在问题是参数数量的膨胀。

CNN卷积神经网络:

图像中有固有的局部模式(比如轮廓、边界、眼睛)可以利用,显然应该将图像处理中的概念和神经网络技术形结合。  得到卷积神经网络CNN;

CNN中,不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原来的位置关系;

RNN 循环神经网络:

应对全连接的DNN 存在的一个问题:无法对时间序列上的变化进行建模。样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值