- 名词
- 支路:电路中通过同一电流的分支 branch b=3
- 节点:三条或三条以上支路的结点 node n=2
- 路径:两个结点之间的通路
- 回路:由路径组成的闭合路经 loop L=3
- 网孔:内部不包含其它支路的回路 mesh m=2
支路电流法
- 定义:以各支路的电流为未知量列与电路方程(kcl、kvl)分析电路的方法。
- 核心:对于有b条支路的电路。即有b个电流做为未知量,列写b个独立方程,再进行求解
从图中可知,有6 条支路,要列写6个独立方程
- kcl方程
( 1 ) : i 6 − i 2 − i 1 = 0 ( 2 ) : i 2 − i 3 − i 4 = 0 ( 3 ) : i 4 + i 5 − i 6 = 0 ( 4 ) : i 1 + i 3 − i 5 = 0 其中将 ( 1 ) + ( 2 ) + ( 3 ) 得 : − i 1 − i 3 + i 5 = 0 与 ( 4 ) 式相同 \begin{aligned}& (1):i_{6}-i_{2}-i_{1}=0\\& (2):i_{2}-i_{3}-i_{4}=0\\& (3):i_{4}+i_{5}-i_{6}=0\\& (4):i_{1}+i_{3}-i_{5}=0\\& 其中将(1)+(2)+(3)得:\\& -i_{1}-i_{3}+i_{5}=0与(4)式相同 \end{aligned} (1):i6−i2−i1=0(2):i2−i3−i4=0(3):i4+i5−i6=0(4):i1+i3−i5=0其中将(1)+(2)+(3)得:−i1−i3+i5=0与(4)式相同
n个kcl方程中,只有n-1个独立方程 #重点 - kvl方程
( 1 ) : u 1 + u 2 − u 3 = 0 ( 2 ) : u 4 − u 5 − u 3 = 0 ( 3 ) : u 1 + u 5 − u s + u 6 = 0 把电压用电流的方式表示出来: ( 1 ) : I 2 R 2 + I 3 R 3 − I 1 R 1 = 0 ( 2 ) : I 4 R 4 − I 5 R 5 − I 3 R 3 = 0 ( 3 ) : I 1 R 1 + I 5 R 5 − U s + I 6 R 6 = 0 \begin{aligned}& (1):u_{1}+u_{2}-u_{3}=0\\& (2):u_{4}-u_{5}-u_{3}=0\\& (3):u_{1}+u_{5}-u_{s}+u_{6}=0\\& 把电压用电流的方式表示出来:\\& (1):I_{2}R_{2}+I_{3}R_{3}-I_{1}R_{1}=0\\& (2):I_{4}R_{4}-I_{5}R_{5}-I_{3}R_{3}=0\\& (3):I_{1}R_{1}+I_{5}R_{5}-U_{s}+I_{6}R_{6}=0 \end{aligned} (1):u1+u2−u3=0(2):u4−u5−u3=0(3):u1+u5−us+u6=0把电压用电流的方式表示出来:(1):I2R2+I3R3−I1R1=0(2):I4R4−I5R5−I3R3=0(3):I1R1+I5R5−Us+I6R6=0
针对电路图的网孔数,有m个kvl方程 #重点 - 6个独立方程为
( 1 ) : i 6 − i 2 − i 1 = 0 ( 2 ) : i 2 − i 3 − i 4 = 0 ( 3 ) : i 4 + i 5 − i 6 = 0 ( 4 ) : I 2 R 2 + I 3 R 3 − I 1 R 1 = 0 ( 5 ) : I 4 R 4 − I 5 R 5 − I 3 R 3 = 0 ( 6 ) : I 1 R 1 + I 5 R 5 − U s + I 6 R 6 = 0 \begin{aligned}& (1):i_{6}-i_{2}-i_{1}=0\\& (2):i_{2}-i_{3}-i_{4}=0\\& (3):i_{4}+i_{5}-i_{6}=0\\& (4):I_{2}R_{2}+I_{3}R_{3}-I_{1}R_{1}=0\\& (5):I_{4}R_{4}-I_{5}R_{5}-I_{3}R_{3}=0\\& (6):I_{1}R_{1}+I_{5}R_{5}-U_{s}+I_{6}R_{6}=0 \end{aligned} (1):i6−i2−i1=0(2):i2−i3−i4=0(3):i4+i5−i6=0(4):I2R2+I3R3−I1R1=0(5):I4R4−I5R5−I3R3=0(6):I1R1+I5R5−Us+I6R6=0
总结
支路电流法的步骤为:
- 针对结点列写 n-1 个kcl方程
- 针对网孔列写 m 个kvl方程(可以不是网孔,只要是回路都可以)
- 联立方程求解
例题
- 求各支路电流及7Ω电阻的功率
解:
k c l : I 1 + I 2 = I 3 k v l 顺时针绕 k v l : 7 I 1 − 11 I 2 + 6 V − 7 V = 0 11 I 2 + 7 I 3 − 6 V = 0 解出: I 1 = 6 A , I 2 = − 2 A , I 3 = 4 A P 7 Ω = I 3 2 ⋅ 7 Ω = 16 × 7 = 112 W \begin{aligned}& kcl:\\&I_{1}+I_{2}=I_{3}\\& \\& kvl顺时针绕\\& kvl:\\& 7I_{1}-11I_{2}+6V-7V=0\\& 11I_{2}+7I_{3}-6V=0\\& \\& 解出:I_{1}=6A,I_{2}=-2A,I_{3}=4A\\& P_{7Ω}=I_{3}^2·7Ω=16×7=112W \end{aligned} kcl:I1+I2=I3kvl顺时针绕kvl:7I1−11I2+6V−7V=011I2+7I3−6V=0解出:I1=6A,I2=−2A,I3=4AP7Ω=I32⋅7Ω=16×7=112W
习题课
第三章-3.1 支路电流法-习题课_哔哩哔哩_bilibili
(1)

列出
k
c
l
、
k
v
l
方程
{
I
1
+
I
2
−
I
3
=
0
1
⋅
I
1
+
3
I
3
−
2
=
0
−
2
I
2
+
4
−
3
I
3
=
0
➡解出➡
{
I
1
=
−
2
11
A
I
2
=
10
11
A
I
3
=
8
11
A
列出kcl、kvl方程 \begin{cases} I_{1}+I_{2}-I_{3}=0\\ 1\cdot I_{1}+3I_{3}-2=0\\ -2I_{2}+4-3I_{3}=0 \end{cases} ➡解出➡ \begin{cases}I_{1}=-\frac{2}{11}A\\I_{2}=\frac{10}{11}A\\I_{3}=\frac{8}{11}A\end{cases}
列出kcl、kvl方程⎩
⎨
⎧I1+I2−I3=01⋅I1+3I3−2=0−2I2+4−3I3=0➡解出➡⎩
⎨
⎧I1=−112AI2=1110AI3=118A
(2)

解:
3
个未知量写
3
个方程
一共两个节点,写
1
个
k
c
l
方程,以上面的节点来写
k
c
l
:
I
1
+
I
2
+
7
A
=
I
3
由于不知道电流源两端的电压方向,无法针对
3
个网孔来列
k
v
l
方程
\begin{aligned}& 3个未知量写3个方程\\& 一共两个节点,写1个kcl方程,以上面的节点来写\\& kcl:I_1+I_2+7A=I_3\\& 由于不知道电流源两端的电压方向,无法针对3个网孔来列kvl方程\\& \end{aligned}
3个未知量写3个方程一共两个节点,写1个kcl方程,以上面的节点来写kcl:I1+I2+7A=I3由于不知道电流源两端的电压方向,无法针对3个网孔来列kvl方程

因此
k
v
l
方程为:
12
I
1
−
42
−
6
I
2
=
0
6
I
2
+
3
I
3
=
0
解得:
{
I
1
=
2
A
I
2
=
−
3
A
I
3
=
6
A
\begin{aligned}& 因此kvl方程为:\\& 12I_1-42-6I_2=0\\& 6I_2+3I_3=0\\& 解得:\begin{cases}I_{1}=2A\\I_{2}=-3A\\I_{3}=6A\end{cases} \end{aligned}
因此kvl方程为:12I1−42−6I2=06I2+3I3=0解得:⎩
⎨
⎧I1=2AI2=−3AI3=6A
(3)

解:
I
2
就是已知量
=
6
A
列出
k
c
l
方程:
I
1
+
6
=
I
3
此时发现:电流源的两段电压不知道,无法针对网孔列出
k
v
l
\begin{aligned}& I_2就是已知量=6A\\& 列出kcl方程:I_1+6=I_3\\& 此时发现:电流源的两段电压不知道,无法针对网孔列出kvl \end{aligned}
I2就是已知量=6A列出kcl方程:I1+6=I3此时发现:电流源的两段电压不知道,无法针对网孔列出kvl

走最外面一圈列
k
v
l
方程:
7
I
1
+
7
I
3
−
70
=
0
解得:
{
I
1
=
2
A
I
3
=
8
A
\begin{aligned}& 走最外面一圈列kvl方程:\\& 7I_{1}+7I_{3}-70=0\\& 解得:\begin{cases}I_{1}=2A\\I_{3}=8A\end{cases} \end{aligned}
走最外面一圈列kvl方程:7I1+7I3−70=0解得:{I1=2AI3=8A
网孔电流法
- 定义:以沿网孔连续流动的假想电流为未知量列与电路方程(kvl)分析电路的方法。
- 基本思想:为减少未知量(方程)的个数,假想每个网孔中有一个回路电流。实际的各支路电流和假想的网孔电流满足一定的线性关系,进而求得电路的解。
由于 i 1 与 i L 1 同时流过电阻 R 1 ,因此可以推出两者电流相等: i 1 = i L 1 同理,也可以推出: i 3 = i L 2 与此同时: i 2 = i L 2 − i L 1 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 还要列下真实的 k v l 方程 i 1 R 1 − i 2 R 2 + u s 2 − u s 1 = 0 i 2 R 2 + i 3 R 3 − u s 2 = 0 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 接着把 i 1 , i 2 , i 3 用 i L 1 , i L 2 替换 i L 1 R 1 − ( i L 2 − i L 1 ) R 2 = u s 1 − u s 2 ( i L 2 − i L 1 ) R 2 + i L 2 R 3 = u s 2 整理后得: i L 1 R 1 − i L 2 R 2 + i L 1 R 2 = u s 1 − u s 2 ⟹ ( R 1 + R 2 ) i L 1 − i L 2 R 2 = u s 1 − u s 2 ① i L 2 R 2 − i L 1 R 2 + i L 2 R 3 = u s 2 ⟹ ( R 2 + R 3 ) i L 2 − i L 1 R 2 = u s 2 ② 观察①②式,可以发现:左边都是 ( 自有电阻 × 电流 − 共用的 ) , 而右边都是电压源的电位升 \begin{aligned}& 由于i_1与i_{L1}同时流过电阻R_1,因此可以推出两者电流相等:i_1=i_{L1}\\& 同理,也可以推出:i_3=i_{L2}\\& 与此同时:i_2=i_{L2}-i_{L1}\\& -----------------------------\\& 还要列下真实的kvl方程\\& i_{1}R_{1}-i_{2}R_{2}+u_{s2}-u_{s1}=0\\& i_{2}R_{2}+i_{3}R_{3}-u_{s2}=0\\& -----------------------------\\& 接着把i_1,i_2,i_3用i_{L1},i_{L2}替换\\& i_{L1}R_{1}-(i_{L2}-i_{L1})R_{2}=u_{s_{1}}-u_{s_{2}}\\& (i_{L2}-i_{L1})R_{2}+i_{L2}R_{3}=u_{s_{2}}\\& 整理后得:\\& i_{L1}R_{1}-i_{L2}R_{2}+i_{L1}R_{2}=u_{s_{1}}-u_{s_{2}}\\& \Longrightarrow(R_{1}+R_{2})i_{L1}-i_{L2}R_{2}=u_{s_{1}}-u_{s_{2}}①\\& i_{L2}R_{2}-i_{L1}R_{2}+i_{L2}R_{3}=u_{s2}\\& \Longrightarrow(R_{2}+R_{3})i_{L2}-i_{L1}R_{2}=u_{s2}②\\& 观察①②式,可以发现:左边都是(自有电阻×电流-共用的),而右边都是电压源的电位升 \end{aligned} 由于i1与iL1同时流过电阻R1,因此可以推出两者电流相等:i1=iL1同理,也可以推出:i3=iL2与此同时:i2=iL2−iL1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−还要列下真实的kvl方程i1R1−i2R2+us2−us1=0i2R2+i3R3−us2=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−接着把i1,i2,i3用iL1,iL2替换iL1R1−(iL2−iL1)R2=us1−us2(iL2−iL1)R2+iL2R3=us2整理后得:iL1R1−iL2R2+iL1R2=us1−us2⟹(R1+R2)iL1−iL2R2=us1−us2①iL2R2−iL1R2+iL2R3=us2⟹(R2+R3)iL2−iL1R2=us2②观察①②式,可以发现:左边都是(自有电阻×电流−共用的),而右边都是电压源的电位升
总结
我们将 R 1 + R 2 记为 R 11 . 为网孔 1 的自电阻 ; 将 R 2 + R 3 记为 R 22 , 为网孔 2 的自电阻 ; 而 R 2 为网孔 1 、 2 共有的电阻,称为互电阻 ; 我们发现:当网孔电流绕方方向一致时 . 互电阻取负 当网孔电流绕方方向相反时 . 互电阻取正 \begin{aligned}& 我们将R_1+R_2记为R_{11}.为网孔1的自电阻;\\& \qquad将R_2+R_3记为R_{22},为网孔2的自电阻;\\& 而R_2为网孔1、2共有的电阻,称为互电阻;\\& 我们发现:当网孔电流绕方方向一致时.互电阻取负\\& \qquad\qquad\quad当网孔电流绕方方向相反时.互电阻取正 \end{aligned} 我们将R1+R2记为R11.为网孔1的自电阻;将R2+R3记为R22,为网孔2的自电阻;而R2为网孔1、2共有的电阻,称为互电阻;我们发现:当网孔电流绕方方向一致时.互电阻取负当网孔电流绕方方向相反时.互电阻取正
例题
(1)
网孔1
:
(
4
+
1
+
10
)
I
L
1
−
10
I
L
2
=
60
V
网孔
2
:
(
10
+
3
+
2
)
I
L
2
−
10
I
L
1
=
−
20
V
⇒
{
I
L
1
=
5.6
A
I
L
2
=
2.4
A
⇒
{
I
1
=
5.6
A
I
3
=
2.4
A
I
2
=
I
L
1
−
I
L
2
=
3.2
A
\begin{aligned}& \text{网孔1}:(4+1+10)I_{L1}-10I_{L2}=60V\\& \text{网孔}2:(10+3+2)I_{L2}-10I_{L1}=-20V\\& \Rightarrow\begin{cases} I_{L1}=5.6A\\ I_{L2}=2.4A \end{cases} \Rightarrow\begin{cases} I_{1}=5.6A\\ I_{3}=2.4A\\ I_{2}=I_{L1}-I_{L2}=3.2A \end{cases} \end{aligned}
网孔1:(4+1+10)IL1−10IL2=60V网孔2:(10+3+2)IL2−10IL1=−20V⇒{IL1=5.6AIL2=2.4A⇒⎩
⎨
⎧I1=5.6AI3=2.4AI2=IL1−IL2=3.2A
(2)

{
(
10
+
20
+
20
)
I
L
1
−
20
I
L
2
−
20
I
L
3
=
40
(
10
+
20
+
5
)
I
L
2
−
20
I
L
1
−
5
I
L
3
=
−
20
(
20
+
5
+
40
)
I
L
3
−
20
I
L
1
−
5
I
L
2
=
−
10
⇒
{
i
L
1
=
108
137
A
i
L
2
=
−
15
137
A
i
L
3
=
11
137
A
\begin{cases}(10+20+20)I_{L1}-20I_{L2}-20I_{L3}=40\\(10+20+5)I_{L2}-20I_{L1}-5I_{L3}=-20\\(20+5+40)I_{L3}-20I_{L1}-5I_{L2}=-10\end{cases} \Rightarrow\begin{cases}i_{L1}=\frac{108}{137}A\\i_{L2}=\frac{-15}{137}A\\i_{L3}=\frac{11}{137}A\end{cases}
⎩
⎨
⎧(10+20+20)IL1−20IL2−20IL3=40(10+20+5)IL2−20IL1−5IL3=−20(20+5+40)IL3−20IL1−5IL2=−10⇒⎩
⎨
⎧iL1=137108AiL2=137−15AiL3=13711A
习题课
第三章-3.2 网孔电流法-习题课_哔哩哔哩_bilibili
(1)
(2)
(3)
结点电压法
- 定义:以结点上的 电位(电压) 为未知量、列与电路方程(kcl)分析电路的方法。适用于结点数较少的电路
- 基本思路:由选取的结点上的电压为未知量,kvl自动满足,而各支路的电流可根据列写好的电位未知量,通过欧姆定理表示出来,只需列写 kcl方程
- 注意事项
- 和交路电流法相比少了m个kvl方程
- 以电位为未知量,必须有参考点
注意:一个电阻和电压源串联,这是一个理想电流源模型,可将其转化后,这样就会多出来一个电流源的流入或流出,不能遗漏!
⑥相关定义
自电导: G 11 = G 1 + G 2 = 1 R 1 + 1 R 2 G 22 = G 2 + G 3 + G 4 = 1 R 2 + 1 R 2 + 1 R 4 G 33 = G 3 + G 5 = 1 R 3 + 1 R 5 互电导: G 12 = G 21 = − 1 R 2 G 23 = G 32 = − 1 R 3 \begin{aligned}& \text{ 自电导:} \\& G_{11} =G_{1}+G_{2}=\frac{1}{R_{1}}+\frac{1}{R_{2}}\\& G_{22} =G_{2}+G_{3}+G_{4}=\frac{1}{R_{2}}+\frac{1}{R_{2}}+\frac{1}{R_{4}}\\& G_{33}=G_{3}+G_{5}=\frac{1}{R_{3}}+\frac{1}{R_{5}} \\& \text{ 互电导:} \\& G_{12}=G_{21}=-\frac{1}{R_{2}}\\& G_{23}=G_{32}=-\frac{1}{R_{3}}\\& \end{aligned} 自电导:G11=G1+G2=R11+R21G22=G2+G3+G4=R21+R21+R41G33=G3+G5=R31+R51 互电导:G12=G21=−R21G23=G32=−R31
总结
- 选定参考点,标出剩余(n-1)个结点
- 将这些结点的电位为未知量,列kcL方程
- 求解,得到电位的数值
- 通过欧姆定律进一步计算相关数值
例题
(1)
(
1
R
s
+
1
R
1
+
1
R
2
)
V
1
−
V
2
R
1
−
V
3
R
s
=
V
s
R
s
(
1
R
1
+
1
R
3
+
1
R
4
)
V
2
−
V
1
R
1
−
V
3
R
4
=
0
(
1
R
4
+
1
R
5
+
1
R
s
)
V
3
−
V
2
R
4
−
V
1
R
s
=
−
V
s
R
s
\begin{aligned}& (\frac{1}{R_{s}}+\frac{1}{R_{1}}+\frac{1}{R_{2}}){V_{1}}-\frac{V_{2}}{R_{1}}-\frac{V_{3}}{R_{s}}=\frac{V_{s}}{R_{s}}\\& (\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{R_{4}})V_{2}-\frac{V_{1}}{R_{1}}-\frac{V_{3}}{R_{4}}=0\\& (\frac{1}{R_{4}}+\frac{1}{R_{5}}+\frac{1}{R_{s}})V_{3}-\frac{V_{2}}{R_{4}}-\frac{V_{1}}{R_{s}}=-\frac{V_{s}}{R_{s}} \end{aligned}
(Rs1+R11+R21)V1−R1V2−RsV3=RsVs(R11+R31+R41)V2−R1V1−R4V3=0(R41+R51+Rs1)V3−R4V2−RsV1=−RsVs
(2)

(
1
2
+
1
2
+
1
3
)
V
1
−
1
2
V
2
−
1
2
V
2
=
1
A
−
2
V
2
Ω
(
1
2
+
1
2
+
1
4
)
V
2
−
1
2
V
1
−
1
2
V
1
=
2
V
2
Ω
∴
V
1
=
1.5
V
,
V
2
=
2
V
∴
I
1
=
0
V
−
1.5
V
3
Ω
=
−
0.5
A
∴
I
2
=
1.5
V
−
2
V
2
Ω
=
−
0.25
A
\begin{aligned}& (\frac12+\frac12+\frac13)V_1-\frac12V_2-\frac12V_2=1A-\frac{2V}{2Ω}\\& (\frac12+\frac12+\frac14)V_2-\frac12V_1-\frac12V_1=\frac{2V}{2Ω}\\& ∴V_1=1.5V,V_2=2V\\& ∴I_1=\frac{0V-1.5V}{3Ω}=-0.5A\\& ∴I_2=\frac{1.5V-2V}{2Ω}=-0.25A\\& \end{aligned}
(21+21+31)V1−21V2−21V2=1A−2Ω2V(21+21+41)V2−21V1−21V1=2Ω2V∴V1=1.5V,V2=2V∴I1=3Ω0V−1.5V=−0.5A∴I2=2Ω1.5V−2V=−0.25A
习题课
(1)
解:
(
1
2
+
1
10
+
1
10
)
V
1
−
1
2
V
3
−
1
10
V
2
=
40
V
2
Ω
(
1
8
+
1
10
+
1
4
)
V
2
−
1
8
V
3
−
1
10
V
1
=
20
V
4
Ω
(
1
8
+
1
8
+
1
2
)
V
3
−
1
8
V
2
−
1
2
V
1
=
−
40
V
2
Ω
∴
{
V
1
=
25.08
A
V
2
=
13.79
A
V
3
=
−
7.648
A
∴
i
5
=
V
3
−
0
8
Ω
=
−
0.956
A
\begin{aligned}& (\frac12+\frac1{10}+\frac1{10})V_1-\frac12V_3-\frac1{10}V_2=\frac{40V}{2Ω}\\& (\frac18+\frac1{10}+\frac1{4})V_2-\frac18V_3-\frac1{10}V_1=\frac{20V}{4Ω}\\& (\frac18+\frac1{8}+\frac1{2})V_3-\frac18V_2-\frac1{2}V_1=-\frac{40V}{2Ω}\\& ∴\begin{cases} V_{1}=\ \ \ 25.08A\\ V_{2}=\ \ \ 13.79A\\ V_{3}=-7.648A \end{cases}\\& ∴i_5=\frac{V_{3}-0}{8Ω}=-0.956A \end{aligned}
(21+101+101)V1−21V3−101V2=2Ω40V(81+101+41)V2−81V3−101V1=4Ω20V(81+81+21)V3−81V2−21V1=−2Ω40V∴⎩
⎨
⎧V1= 25.08AV2= 13.79AV3=−7.648A∴i5=8ΩV3−0=−0.956A
(2)
解:
由于左边是两个电压源的串联,可以合并成一个电压源,左右两边的电阻也可以合并
由于左边是两个电压源的串联,可以合并成一个电压源,左右两边的电阻也可以合并
由于左边是两个电压源的串联,可以合并成一个电压源,左右两边的电阻也可以合并
{
(
1
6
+
1
6
+
1
3
)
V
1
−
1
3
V
2
=
48
6
+
48
6
(
1
3
+
1
8
+
1
8
)
V
2
−
1
3
V
1
=
0
V
1
=
33.6
V
,
V
2
=
19.2
V
i
=
V
2
−
0
V
82
=
2.4
A
\begin{aligned}& \begin{cases} (\frac{1}{6}+\frac{1}{6}+\frac{1}{3})V_{1}-\frac{1}{3}V_{2}=\frac{48}{6}+\frac{48}{6}\\ (\frac{1}{3}+\frac{1}{8}+\frac{1}{8})V_{2}-\frac{1}{3}V_{1}=0 \end{cases}\\& V_{1}=33.6V,V_{2}=19.2V\\&i=\frac{V_{2}-0V}{82}=2.4A\end{aligned}
{(61+61+31)V1−31V2=648+648(31+81+81)V2−31V1=0V1=33.6V,V2=19.2Vi=82V2−0V=2.4A
(3)
解:
由于右下角的电压源没有电阻与之相连,可以直接将电压源的负极接地,这样正极就是
5
V
{
(
1
5
+
1
5
)
V
1
−
1
5
V
2
=
30
5
−
1
(
1
5
+
1
20
+
1
30
)
V
2
−
1
5
V
1
−
5
20
=
0
∴
V
1
=
20
V
,
V
2
=
15
V
I
=
0.5
A
\begin{aligned}& 由于右下角的电压源没有电阻与之相连,可以直接将电压源的负极接地,这样正极就是5V\\& \begin{cases} (\frac{1}{5}+\frac{1}{5})V_{1}-\frac{1}{5}V_{2}=\frac{30}{5}-1\\ (\frac{1}{5}+\frac{1}{20}+\frac{1}{30})V_{2}-\frac{1}{5}V_{1}-{\frac{5}{20}}=0\\ \end{cases}\\& ∴V_{1}=20V,V_{2}=15V\\& I=0.5A \end{aligned}
由于右下角的电压源没有电阻与之相连,可以直接将电压源的负极接地,这样正极就是5V{(51+51)V1−51V2=530−1(51+201+301)V2−51V1−205=0∴V1=20V,V2=15VI=0.5A
(4)
解:
由于右边与下面的电压源没有电阻与之相连,可以直接将电压源的负极接地
注意:如果开始写
(
1
2
+
1
+
1
2
)
V
1
+
.
.
.
.
这就错了
因为中间的
1
Ω
电阻是与电流源串联的,与电流源串联的元件可以看作直接短路
正确的等式是:
(
1
2
+
1
2
)
V
−
210
2
−
100
2
=
20
A
(
1
)
若无法理解,可以从结点电压法的核心出发,列出
k
c
l
方程:
\begin{aligned}& 由于右边与下面的电压源没有电阻与之相连,可以直接将电压源的负极接地\\& 注意:如果开始写(\frac12+1+\frac12)V_1+....这就错了\\& 因为中间的1Ω电阻是与电流源串联的,与电流源串联的元件可以看作直接短路\\& 正确的等式是:(\frac{1}{2}+\frac{1}{2})V-\frac{210}{2}-\frac{100}{2}=20A\quad\quad\quad\quad\quad\quad(1)\\& 若无法理解,可以从结点电压法的核心出发,列出kcl方程:\\& \end{aligned}
由于右边与下面的电压源没有电阻与之相连,可以直接将电压源的负极接地注意:如果开始写(21+1+21)V1+....这就错了因为中间的1Ω电阻是与电流源串联的,与电流源串联的元件可以看作直接短路正确的等式是:(21+21)V−2210−2100=20A(1)若无法理解,可以从结点电压法的核心出发,列出kcl方程:
假设电流参考方向为
I
1
和
I
2
I
1
+
I
2
=
20
A
I
1
=
V
−
210
2
I
2
=
V
−
100
2
V
−
210
2
+
V
−
100
2
=
20
1
2
V
−
210
2
+
1
2
V
−
100
2
=
20
此时可以发现最后出来的式子与
(
1
)
式相同
∴
V
=
175
V
剩下的电压与电流就可以算了
\begin{aligned}& 假设电流参考方向为I_1和I_2\\& I_{1}+I_{2}=20A\\& I_{1}=\frac{V-210}{2}\\& I_{2}=\frac{V-100}{2}\\& \frac{V-210}{2}+\frac{V-100}{2}=20\\& \frac{1}{2}V-\frac{210}{2}+\frac{1}{2}V-\frac{100}{2}=20\\& 此时可以发现最后出来的式子与(1)式相同\\& ∴V=175V\\& 剩下的电压与电流就可以算了 \end{aligned}
假设电流参考方向为I1和I2I1+I2=20AI1=2V−210I2=2V−1002V−210+2V−100=2021V−2210+21V−2100=20此时可以发现最后出来的式子与(1)式相同∴V=175V剩下的电压与电流就可以算了
(5)
{
(
1
2
+
1
3
)
V
1
−
1
3
V
2
=
2
A
−
2
U
U
=
V
1
−
V
2
3
(
1
3
+
1
3
+
1
3
)
V
2
−
1
3
V
1
=
2
U
+
3
I
3
I
=
1
2
V
1
(
1
2
+
1
3
)
V
1
−
1
3
V
2
=
2
−
2
V
1
−
V
2
3
5
6
V
1
−
1
3
V
2
=
2
−
2
3
V
1
+
2
3
V
2
①
V
2
−
1
3
V
1
=
2
V
1
−
V
2
3
+
1
2
V
1
V
2
−
1
3
V
1
=
2
3
V
1
−
2
3
V
2
+
1
2
V
1
②
∴
V
1
=
10
3
V
,
V
2
=
3
V
I
=
V
1
2
=
5
3
A
P
=
5
V
×
2
3
A
=
10
3
W
发出功率
\begin{aligned}& \begin{cases} (\frac{1}{2}+\frac{1}{3})V_{1}-\frac{1}{3}V_{2}=2A-2U\\U=\frac{V_{1}-V_{2}}{3}\\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3})V_{2}-\frac{1}{3}V_{1}=2U+\frac{3I}{3}\\I=\frac{1}{2}V_{1} \end{cases}\\& (\frac{1}{2}+\frac{1}{3})V_{1}-\frac{1}{3}V_{2}=2-2\frac{V_{1}-V_{2}}{3}\\& \frac{5}{6}V_{1}-\frac{1}{3}V_{2}=2-\frac{2}{3}V_{1}+\frac{2}{3}V_{2}\qquad\qquad①\\& V_{2}-\frac{1}{3}V_{1}=2\frac{V_{1}-V_{2}}{3}+\frac{1}{2}V_{1}\\& V_{2}-\frac{1}{3}V_{1}=\frac{2}{3}V_{1}-\frac{2}{3}V_{2}+\frac{1}{2}V_{1}\qquad\ \ \ \ \ \ ②\\& ∴V_{1}=\frac{10}{3}V,V_{2}=3V\\& I=\frac{V_{1}}{2}=\frac{5}{3}A\\& P=5V\times\frac{2}{3}A=\frac{10}{3}W\quad发出功率 \end{aligned}
⎩
⎨
⎧(21+31)V1−31V2=2A−2UU=3V1−V2(31+31+31)V2−31V1=2U+33II=21V1(21+31)V1−31V2=2−23V1−V265V1−31V2=2−32V1+32V2①V2−31V1=23V1−V2+21V1V2−31V1=32V1−32V2+21V1 ②∴V1=310V,V2=3VI=2V1=35AP=5V×32A=310W发出功率
回路电流法
- 定义:从基本回路中沿回路连续流动的假想电流为未知量列写电路方程(kvl)分析电话的方法其原理与网孔电流法大致相同
- 步骤
- 选定m个回路,并确定绕行方向
- 对m个回路,以回防上的假想电流为未知量,列与的方程.
- 求解方程,进一步进行相关计算
- 特点
- 通过灵活选取回路改定回路电流可以减少计算量
- 互电阻的识别难度大