探索中的隐私计算:天冕联邦学习平台落地案例

联邦学习是一种在保障数据隐私的前提下,通过分散数据进行机器学习模型训练的技术,广泛应用于金融、零售和自动驾驶等领域。天冕科技的联邦学习平台实现了数据安全合作,助力企业提升业务效率。某头部互金公司通过天冕联邦学习平台进行联合建模,成功提高营销ROI,验证了联邦学习在实际业务中的有效性。
摘要由CSDN通过智能技术生成

导语

联邦学习(Federated learning)在保证数据隐私性的前提下,使用分散在各地的数据,训练机器学习/深度学习模型,从而在遵守隐私保护法律的前提下,通过协作建模,提升机器学习的效率,其在金融、零售、自动驾驶等领域已有广泛应用。

正文

继《网络安全法》、《数据安全法》、《个人信息保护法》陆续实施之后,国家对网络安全、数据安全、和个人信息安全都有了明文严格的法律法规保护与制约。

毫不夸张地说,数据安全已经成为了整个时代都关注的重要议题之一。跨机构的数据要素融合应用充满了挑战,而隐私计算技术发明的初衷,便是服务于各方数据在合作中不被泄露的诉求,其解决最根本的问题是隐私数据的安全性。

天冕科技自2019年8月获得的第一个国家知识产权局的发明专利证书“欺诈检测和风险评估方法、系统、设备及存储介质”的评估方法之后,就展开了对隐私计算技术的深入探索,其布局时间远早于隐私计算风口到来之时,彰显出天冕科技在创新科技研究方面超前的战略眼光。

如果我们把创新技术的商业模式按照IT系统和应用平台两种类型来划分,则隐私计算技术的应用从现阶段来看,更偏向于定位成一个应用平台。该类型的划分在业务逻辑上有着很大的区别。IT系统,在应用中的最终价值,是帮助使用方节省成本;应用平台,则可能对具体使用方有提升业务的作用。目前隐私计算技术的作用更偏后者,其根本价值,主要是使得机构能够将内外部数据结合起来对用户进行分析,从而提升业务收入。在这样的大背景下,一种基于数据隐私保护技术实现的分布式训练范式——联邦学习应运而生,逐渐受到学术界和工业界的广泛关注。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值