导语
联邦学习(Federated learning)在保证数据隐私性的前提下,使用分散在各地的数据,训练机器学习/深度学习模型,从而在遵守隐私保护法律的前提下,通过协作建模,提升机器学习的效率,其在金融、零售、自动驾驶等领域已有广泛应用。
正文
继《网络安全法》、《数据安全法》、《个人信息保护法》陆续实施之后,国家对网络安全、数据安全、和个人信息安全都有了明文严格的法律法规保护与制约。
毫不夸张地说,数据安全已经成为了整个时代都关注的重要议题之一。跨机构的数据要素融合应用充满了挑战,而隐私计算技术发明的初衷,便是服务于各方数据在合作中不被泄露的诉求,其解决最根本的问题是隐私数据的安全性。
天冕科技自2019年8月获得的第一个国家知识产权局的发明专利证书“欺诈检测和风险评估方法、系统、设备及存储介质”的评估方法之后,就展开了对隐私计算技术的深入探索,其布局时间远早于隐私计算风口到来之时,彰显出天冕科技在创新科技研究方面超前的战略眼光。
如果我们把创新技术的商业模式按照IT系统和应用平台两种类型来划分,则隐私计算技术的应用从现阶段来看,更偏向于定位成一个应用平台。该类型的划分在业务逻辑上有着很大的区别。IT系统,在应用中的最终价值,是帮助使用方节省成本;应用平台,则可能对具体使用方有提升业务的作用。目前隐私计算技术的作用更偏后者,其根本价值,主要是使得机构能够将内外部数据结合起来对用户进行分析,从而提升业务收入。在这样的大背景下,一种基于数据隐私保护技术实现的分布式训练范式——联邦学习应运而生,逐渐受到学术界和工业界的广泛关注。