理解ADMM, ALF和Split Bregman

本文深入探讨了ADMM(交替方向乘子法)和ALM(增广拉格朗日乘子法)在图像处理领域的应用,对比了两者的优缺点,并介绍了分裂Bregman算法作为L1正则化问题的解决方案。ADMM通过交替更新原始变量、分裂变量和对偶变量,解决了大型优化问题;ALM通过引入二次惩罚项提高了LF的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

在图像去模糊,低光照图像增强和去噪等任务时,我们都会引入各种先验或约束项来缓解这些t逆问题(inverse problems)的病态性(ill-posedness)。比如,我们会用 L 2 L_2 L2, L 1 L_1 L1等约束图像的光滑性,或者梯度的稀疏性。在贝叶斯框架,如最大后验估计(MAP), 变分法(variational method),求解这些问题都需要相关的优化算法。在很多文章中都会说,我用了啥方法求解,对于我这个优化理论的小白来说,实在是一头雾水。我本来打算系统地学习优化理论,但是我发现,等自己什么都了解一下再去做科研黄花菜都凉了。且不说都学不学得会,就算学会了也不一定都能用到。于是我决定不再做一个“仓鼠”, 总是收藏各种资源。我要把在解决具体问题过程中遇到的相关算法吃透。

以下介绍ADMM, ALF和Split Bergman,算作一个知识输出。一方面有利于自己组织知识结构,另一方面也希望可以给同行做点微不足道的贡献。

Alternating Direction Method of Multipliers

ADMM: 交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是求解约束问题的最优化算法框架, 通常解决的是等式优化问题。主要思路就是“各个击破,分而治之”,将一个大的全局的问题分解为几个子问题(sub-problem):原始变量、分裂变量以及对偶变量(即拉格朗日系数,Lagrange coefficient)三种变量的交替更新^ 1。从其命名我们可以知道,“交替”是一个很重要的策略。这个算法是每个子问题就是求解一个分量,与此同时固定其他分量。整个优化就是一个大循环,大循环中有几个小循环,这些小循环就是子问题的优化过程^ 2

Augmented Lagrangian Multipliers

ALM: 在谈增广拉格朗日函数(Augmented Lagrangian Multipliers, ALM)前,我们要讲Lagrangian Multipliers,这就是高数课本中的那个拉格朗日(他来了!他来了!)函数,那时我们要求解一个目标函数 f ( x , y ) f(x, y) f(x,y)的极值,另外要有一个限制条件 g ( x , y ) = c g(x, y)=c g(x,y)=c

我们那个时候是怎么做的呢?我们会构造一个新的函数 L ( x , y , λ ) = f ( x , y ) + λ ( g ( x , y ) − c ) L(x, y,\lambda)=f(x, y)+\lambda(g(x, y)-c) L(x,y,λ)=f(x,y)+λ(g(x,y)c)。值得注意的是 λ \lambda λ就是上面所说的拉格朗日系数,也就是对偶变量。然后我们会分别对 x , y , λ x,y,\lambda x,y,λ求偏导: ∂ L ∂ x = 0 , ∂ L ∂ y = 0 , ∂ L ∂ λ = 0 \frac{\partial L}{\partial x}=0,\frac{\partial L}{\partial y}=0,\frac{\partial L}{\partial \lambda}=0 xL=0,yL=0,λL=0

对于ALM, 我们要关注的是"Augmented",所谓“增广”,大白话就是加了东西嘛?在LF基础上, ALM加了对约束增加一个惩罚项(这是一个二次惩罚项)。这篇博文中讲,之所以加上这么一个惩罚项,是因为LF还不够“凸”(越“凸”越强,我笑了!)。引入惩罚就是把约束问题变成非约束问题^ 3(”非约束“和”凸“是等价的概念嘛?如果你有相关理论解释请留言吧!)。在另外一篇博文中分析了为什么加的是惩罚项是二次的原因:

至于为什么加的是二次惩罚项,主要因为我们求解的问题有个前提:针对于等式约束或者小于等于型不等式约束,恰能用二次惩罚项建模

在某乎中有人评论道:

Lagrange Multiplier可以看成是linear penalty,Augmented Lagrangian可以看成是linear+quadratic penalty。Augmented Lagrangian等式约束更容易被满足,即Augmented Lagrangian的收敛性更强,收敛速度也会快一些。

总而言之,针对于上面举的一个LM例子,最终的ALF表示为:

L ( x , y , λ ) = f ( x , y ) + λ ( g ( x , y ) − c ) + ρ 2 ∥ g ( x , y ) − c ∥ 2 L(x, y,\lambda)=f(x, y)+\lambda(g(x, y)-c)+\frac{\rho }{2}\left \| g(x, y)-c\right \|^2 L(x,y,λ)=f(x,y)+λ(g(x,y)c)+2ρg(x,y)c2

针对于这个ALF函数,ADMM的流程如下:

  1. 求解 x x x(同时固定 y , λ y,\lambda y,λ), x k + 1 = arg min ⁡ x L ( x , y k , λ k ) x^{k+1}= \underset{x}{\argmin}L(x,y^k,\lambda^k) xk+1=xargminL(x,yk,λk)
  2. 求解 y y y(同时固定 x , λ x,\lambda x,λ), y k + 1 = arg min ⁡ y L ( x k + 1 , y , λ k ) y^{k+1}= \underset{y}{\argmin}L(x^{k+1},y,\lambda^k) yk+1=yargminL(xk+1,y,λk)
  3. 求解 λ \lambda λ(上面已经得到了 x k + 1 , y k + 1 x^{k+1},y^{k+1} xk+1,yk+1), λ k + 1 = λ k + ρ ( g ( x k + 1 , y k + 1 ) − c ) \lambda^{k+1}= \lambda^k+\rho(g(x^{k+1},y^{k+1})-c) λk+1=λk+ρ(g(xk+1,yk+1)c)

小结

我们针对ALM和ADMM做一个小小的总结:

  • LF收敛困难,但是函数几个方向是可以分解的。
  • 为提高收敛性,ALF在LF基础上引入二次惩罚项,但二次惩罚项破坏了LF的可分解特性
  • ADMM就是为了解耦同时又可以保证ALF的收敛性而被提出(只是众多方法中的一种,欢迎补充)。因此有人总结道:ADMM=Augmented Lagrangian+Alternating Direction Minimization, 即ALF早就有了,ADMM只是一种交替优化的一种方式^ 4

Splitt Bregman

Splitt Bregman: 在约束图像梯度方面, L 1 L_1 L1 L 2 L_2 L2更稀疏,但也更难以求解。分裂Bregman迭代算法是为了求解 L 1 L_1 L1正则约束的优化问题的(这篇文章谈到ADMM也可以求解 L 1 L_1 L1正则约束问题)。本质上与ADMM一样, 并无区别,这篇博文谈到分裂Bregman只是缩放版的ADMM(截至本文完成时,我只是一个门外汉,先蹲个坑,以后会比较两者区别)。

最后贴一个S. Boyd的论文中ADMM的Matlab代码网页,这里有许多examples.

这里还有一篇文章对S. Boyd的2011年的文章《Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers》翻译和总结,推荐阅读:
[1] http://joegaotao.github.io/cn/2014/02/admm

### OSQP ADMM 优化算法的特点、应用及差异 #### 特点 OSQP (Operator Splitting Quadratic Program) 是一种用于求解凸二次规划问题的有效方法。该算法基于交替方向乘子法(ADMM),并利用算子分裂技术来加速收敛过程[^1]。 ADMM (Alternating Direction Method of Multipliers) 则是一种更为通用的一阶优化框架,适用于解决大规模分布式优化问题。其核心思想在于通过引入辅助变量将原问题分解成若干个更易处理的小规模子问题,并采用增广拉格朗日函数来进行迭代更新。 #### 应用场景 对于线性约束下的稀疏信号恢复等问题而言,由于这些问题通常可以被建模为具有特定结构形式的标准 QP 模型,因此 OSQP 可以高效地找到最优解;而在机器学习领域中的参数估计任务里,则更多地会见到 ADMM 的身影——尤其是在面对数据集庞大且分布式的场合下表现尤为出色。 #### 差异对比 | 对比维度 | OSQP | ADMM | |--| | **适用范围** | 主要针对标准形式的二次规划问题 | 更加广泛的应用于各种类型的凸优化问题 | | **计算效率** | 高效求解中小型到大型稀疏矩阵构成的 QP 问题 | 计算复杂度相对较高,在某些情况下可能需要更多的迭代次数才能达到相同的精度 | | **内存占用** | 较低 | 当处理超大规模问题时可能会面临较高的存储需求 | | **实现难度** | 提供了易于使用的 Python/C 接口 | 实现较为灵活多样,但对于初学者来说上手门槛稍高 | ```python import osqp from scipy import sparse # 定义一个简单的Qp问题实例化osqp solver对象 m = 20; n = 10 A = sparse.random(m, n, density=0.5, format='csc') u = 10 + numpy.random.randn(m) l = -10 + numpy.random.randn(m) prob = osqp.OSQP() prob.setup(P=sparse.csc_matrix((n,n)), q=numpy.zeros(n), A=A, l=l, u=u) res = prob.solve() print(res.x) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值