【机器翻译】SCONES——用多标签任务做机器翻译

本文介绍了SCONES模型如何通过多标签任务来解决神经机器翻译中的歧义问题。传统的softmax方法可能导致合理翻译词的生成可能性被抑制,而SCONES采用每个单词的二分类任务,通过sigmoid和BCE损失函数避免了这一问题,提高了翻译质量和速度。
摘要由CSDN通过智能技术生成

《Jam or Cream First?Modeling Ambiguity in Neural MachineTranslation with SCONES》icon-default.png?t=M666https://arxiv.org/pdf/2205.00704.pdf

前言

之前有负责过一个层级多标签分类的项目,所以对于由多分类到多标签的区别十分清楚,最近刷到这篇论文顿时来了兴趣,然后发现方法也十分简单,基本就是一个标准多标签任务的模式。尽管简单,但这样做并不是为花而花的“花板子”,其准确抓住当前机器翻译训练方式导致的问题——decoding过程中模型输出层的softmax抑制了“非ground truth但合理”词的生成可能性,而转化为多个二分类+sigmoid的常见多标签任务形式则正好避开了这一问题,所以重点就转移到了对如何拆分建模为多个二分类任务以及有效的多标签loss的设计。

从多分类到多标签

这里先快速介绍下多标签(multi-label)分类的一种典型模式。

抛开模型结构,常见的单标签

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值